Как цифровизация уже поменяла экономику?
Статья ЕЦБ (апрель 2023) напоминает, что уже прошедшие процессы цифровизации принесли экономике. Основные выводы:
1) работы "в среднем" не исчезают при цифровизации, но их содержание меняется. На рынке труда "вымываются" средне-квалифицированные работы;
2) растёт неравенство доходов и богатства (в том числе из-за роста доли владельцев капитала);
3) видимо, развитие финтеха и изменения в электронных продажах (e-com) усиливают влияние денежно-кредитной политики.
И дальше много "полезных слов" про то, что людям нужно помогать, переобучать и т.п. Честно говоря, вопрос - как "искусственный интеллект" поменяет эти призывы...
#AI #Digital #Labor
Статья ЕЦБ (апрель 2023) напоминает, что уже прошедшие процессы цифровизации принесли экономике. Основные выводы:
1) работы "в среднем" не исчезают при цифровизации, но их содержание меняется. На рынке труда "вымываются" средне-квалифицированные работы;
2) растёт неравенство доходов и богатства (в том числе из-за роста доли владельцев капитала);
3) видимо, развитие финтеха и изменения в электронных продажах (e-com) усиливают влияние денежно-кредитной политики.
И дальше много "полезных слов" про то, что людям нужно помогать, переобучать и т.п. Честно говоря, вопрос - как "искусственный интеллект" поменяет эти призывы...
#AI #Digital #Labor
Связь с технологиями и доходности после ChatGPT.
По идее, релиз ChatGPT должен был повлиять на доходности компаний, больше или меньше связанных с ИИ. Авторы (май 2023) показывают, что с ноября 2022 дневные альфы (то есть "излишние доходности") таких фирм действительно значительно выше, причем до релиза никаких отличий не найти.
Вывод: видимо, рынок уже успел оценить важность ChatGPT и связать его влияние с конкретными компаниями.
#ChatGPT #AI #Firms #Stocks
По идее, релиз ChatGPT должен был повлиять на доходности компаний, больше или меньше связанных с ИИ. Авторы (май 2023) показывают, что с ноября 2022 дневные альфы (то есть "излишние доходности") таких фирм действительно значительно выше, причем до релиза никаких отличий не найти.
Вывод: видимо, рынок уже успел оценить важность ChatGPT и связать его влияние с конкретными компаниями.
#ChatGPT #AI #Firms #Stocks
NBER
Generative AI and Firm Values
What are the effects of recent advances in Generative AI on the value of firms? Our study offers a quantitative answer to this question for U.S. publicly traded companies based on the exposures of their workforce to Generative AI. Our novel firm-level measure…
Как может меняться компания под воздействием ИИ?
Статья (июнь 2023) смотрит на то, какие компании активно используют технологии искусственного интеллекта (ИИ), и как это влияет на свойства самой фирмы. Идея в том, что привлечение сотрудников, умеющих в ИИ, может снизить необходимость в менеджерах среднего звена. Вместо них могут более широко внедряться способы работы с данными.
Для этого авторы анализируют резюме сотрудников, а также объявления о позициях этих компаний. Период 2010-2018 с постепенным внедрением ИИ.
Результаты впечатляют:
1) активнее берут на ИИ-связанные позиции в компаниях, которые уже наняли больше сотрудников с PhD и из STEM (наука, технологии, инженерные специальности, математика);
2) структура таких ИИ-активных компаний становится "более плоской". Это означает, что становится больше сотрудников на начальных позициях, меньше на средних и высоких, при этом сдвиг происходит в сторону более образованных людей.
Вывод: мы ещё не видели полного эффекта влияния ИИ на рынок труда. Очевидно, что если ИИ становятся важнее, то компания обязана молодеть - потому что более взрослые люди не всегда знакомы с ИИ. Вероятно, что в ближайшее десятилетие подобная иерархическая структура не воспроизведётся, потому что все будут знать про ИИ, даже мы, взрослеющие люди.
#AI #Firms #Labor
Статья (июнь 2023) смотрит на то, какие компании активно используют технологии искусственного интеллекта (ИИ), и как это влияет на свойства самой фирмы. Идея в том, что привлечение сотрудников, умеющих в ИИ, может снизить необходимость в менеджерах среднего звена. Вместо них могут более широко внедряться способы работы с данными.
Для этого авторы анализируют резюме сотрудников, а также объявления о позициях этих компаний. Период 2010-2018 с постепенным внедрением ИИ.
Результаты впечатляют:
1) активнее берут на ИИ-связанные позиции в компаниях, которые уже наняли больше сотрудников с PhD и из STEM (наука, технологии, инженерные специальности, математика);
2) структура таких ИИ-активных компаний становится "более плоской". Это означает, что становится больше сотрудников на начальных позициях, меньше на средних и высоких, при этом сдвиг происходит в сторону более образованных людей.
Вывод: мы ещё не видели полного эффекта влияния ИИ на рынок труда. Очевидно, что если ИИ становятся важнее, то компания обязана молодеть - потому что более взрослые люди не всегда знакомы с ИИ. Вероятно, что в ближайшее десятилетие подобная иерархическая структура не воспроизведётся, потому что все будут знать про ИИ, даже мы, взрослеющие люди.
#AI #Firms #Labor
NBER
Firm Investments in Artificial Intelligence Technologies and Changes in Workforce Composition
We study the shifts in U.S. firms' workforce composition and organization associated with the use of AI technologies. To do so, we leverage a unique combination of worker resume and job postings datasets to measure firm-level AI investments and workforce…
Риски ИИ: "давайте делать исследования этично".
Nature опубликовала редакторскую статью (июнь 2023) для обсуждения рисков искусственного интеллекта (ИИ). По мнению авторов, надо забыть про отдалённые во времени проблемы и сосредоточиться на исследованиях этичности ИИ в наше время. У моделей машинного обучения есть как минимум несколько потенциально опасных сторон - от "расовых предпочтений", до "утери работ гражданами", и до "чёрного ящика" выбора людей для программ социальной или медицинской помощи.
Будет интересно следить за процессом - во многих странах задумались, насколько системы распознавания лиц этичны, и пытаются запрещать. В других укрепляют безопасность данных. В третьих решения сделали очень продвинутыми и продают в другие страны. Каким будет итоговое решение - очень важно для людей.
Вот научпоп книга про эти вопросы:
https://www.litres.ru/book/maks-tegmark/zhizn-3-0-byt-chelovekom-v-epohu-iskusstvennogo-intellekta-41741198/
#AI #Nature
Nature опубликовала редакторскую статью (июнь 2023) для обсуждения рисков искусственного интеллекта (ИИ). По мнению авторов, надо забыть про отдалённые во времени проблемы и сосредоточиться на исследованиях этичности ИИ в наше время. У моделей машинного обучения есть как минимум несколько потенциально опасных сторон - от "расовых предпочтений", до "утери работ гражданами", и до "чёрного ящика" выбора людей для программ социальной или медицинской помощи.
Будет интересно следить за процессом - во многих странах задумались, насколько системы распознавания лиц этичны, и пытаются запрещать. В других укрепляют безопасность данных. В третьих решения сделали очень продвинутыми и продают в другие страны. Каким будет итоговое решение - очень важно для людей.
Вот научпоп книга про эти вопросы:
https://www.litres.ru/book/maks-tegmark/zhizn-3-0-byt-chelovekom-v-epohu-iskusstvennogo-intellekta-41741198/
#AI #Nature
Nature
Stop talking about tomorrow’s AI doomsday when AI poses risks today
Nature - Talk of artificial intelligence destroying humanity plays into the tech companies’ agenda, and hinders effective regulation of the societal harms AI is causing right now.
Регулирование "новых технологий": нужно по секторам?
Аджемоглу не только выпустил полезную для обсуждения книгу "Power and Progress". Он также старается иллюстрировать отдельные кейсы моделями - это очень важно, чтобы понять "равновесные эффекты" и не останавливаться на отдельных рынках.
Статья (июль 2023) анализирует, как нужно регулировать новые технологии (искусственный интеллект), если не сразу проявляются и плюсы роста производительности, и минусы социальных последствий. Если ИИ меняет рынок труда и "увольняет" сотрудников компании, нужно придумать, как внедрять ИИ постепенно, подготовить людей и улучшить возможности работы в других направлениях. Роль регулятора может оказаться очень важной.
Результаты: социально оптимальное внедрение зависит от роста производительности при новых технологиях. Если производительность растёт примерно со скоростью увеличения социальных издержек, то внедрять надо постепенно - определяясь, как снижать эти издержки, и регулируя внедрение активнее. Если же производительность от технологии радикально выше социальных издержек, то внедрение нужно ускорять, и появляется вопрос налогообложения прибылей компаний.
Вывод: с ИИ может получиться интересно, потому что сейчас смахивает на большую производительность и одновременно потенциально высокие издержки - заменить хотят многих сотрудников, включая ИТ и аналитиков. Поэтому роль регулирования "по Аджемоглу" огромная.
#AI #Acemoglu #Regulation
Аджемоглу не только выпустил полезную для обсуждения книгу "Power and Progress". Он также старается иллюстрировать отдельные кейсы моделями - это очень важно, чтобы понять "равновесные эффекты" и не останавливаться на отдельных рынках.
Статья (июль 2023) анализирует, как нужно регулировать новые технологии (искусственный интеллект), если не сразу проявляются и плюсы роста производительности, и минусы социальных последствий. Если ИИ меняет рынок труда и "увольняет" сотрудников компании, нужно придумать, как внедрять ИИ постепенно, подготовить людей и улучшить возможности работы в других направлениях. Роль регулятора может оказаться очень важной.
Результаты: социально оптимальное внедрение зависит от роста производительности при новых технологиях. Если производительность растёт примерно со скоростью увеличения социальных издержек, то внедрять надо постепенно - определяясь, как снижать эти издержки, и регулируя внедрение активнее. Если же производительность от технологии радикально выше социальных издержек, то внедрение нужно ускорять, и появляется вопрос налогообложения прибылей компаний.
Вывод: с ИИ может получиться интересно, потому что сейчас смахивает на большую производительность и одновременно потенциально высокие издержки - заменить хотят многих сотрудников, включая ИТ и аналитиков. Поэтому роль регулирования "по Аджемоглу" огромная.
#AI #Acemoglu #Regulation
NBER
Regulating Transformative Technologies
Transformative technologies like generative artificial intelligence promise to accelerate productivity growth across many sectors, but they also present new risks from potential misuse. We develop a multi-sector technology adoption model to study the optimal…
Почему мы будем учить студентов пользоваться GigaChat или ChatGPT?
Потому что они помогают не только писать код (важно для курсов), но и в совсем простых задачах. Статья (июль 2023) демонстрирует, что алгоритмы улучшения текста исправляют качество резюме, а это приводит к более частым предложениям работы. Механизм - в "подтверждении способностей": если резюме написано грамотно, HR легче согласиться, что кандидат выглядит получше.
Коллеги, которые пока против использования, вынуждены будут признать большую пользу от этих помощников.
#AI #Labor
Потому что они помогают не только писать код (важно для курсов), но и в совсем простых задачах. Статья (июль 2023) демонстрирует, что алгоритмы улучшения текста исправляют качество резюме, а это приводит к более частым предложениям работы. Механизм - в "подтверждении способностей": если резюме написано грамотно, HR легче согласиться, что кандидат выглядит получше.
Коллеги, которые пока против использования, вынуждены будут признать большую пользу от этих помощников.
#AI #Labor
Нейронные сети и предсказания инфляции.
Жаль, что Ведомости не взяли комментарий у Константина Стырина или у меня как людей, которые помогают писать работы по нейронным сетям и инфляции. Тем не менее, это действительно тренд - пытаться вытащить хорошие прогнозы из "сложных моделей", и как Антон Ермак продемонстрировал в магистерской работе этого года, они помогают даже на высоком уровне агрегации (проды, непроды, услуги).
Что показывает статья коллег из ФРС? Если использовать даже не ChatGPT, а языковую модель Гугла, всё равно предсказания по инфляции на будущие горизонты, особенно на год и больше, получаются лучше, чем у аналитиков.
Большой или огромный вопрос к этому - насколько модель "почувствовала инфляционный период". Всё-таки 2019-2023 сильно нестандартный период времени, и я был бы осторожен в интерпретации. Но в целом интересная работа, будем разбираться.
#AI #Inflation
Жаль, что Ведомости не взяли комментарий у Константина Стырина или у меня как людей, которые помогают писать работы по нейронным сетям и инфляции. Тем не менее, это действительно тренд - пытаться вытащить хорошие прогнозы из "сложных моделей", и как Антон Ермак продемонстрировал в магистерской работе этого года, они помогают даже на высоком уровне агрегации (проды, непроды, услуги).
Что показывает статья коллег из ФРС? Если использовать даже не ChatGPT, а языковую модель Гугла, всё равно предсказания по инфляции на будущие горизонты, особенно на год и больше, получаются лучше, чем у аналитиков.
Большой или огромный вопрос к этому - насколько модель "почувствовала инфляционный период". Всё-таки 2019-2023 сильно нестандартный период времени, и я был бы осторожен в интерпретации. Но в целом интересная работа, будем разбираться.
#AI #Inflation
Ведомости
В ФРС назвали прогнозы нейросетей точнее экспертных
Они могут стать мощным инструментом для аналитиков
Всегда ли ИИ помогает?
У многих (включая меня) теплится надежда на то, что искусственный интеллект (ИИ) сможет улучшить почти любые решения людей. Авторы статьи (июль 2023) показывают, что пока это убеждение слишком смелое. Они исследуют, что происходит в радиологии при добавлении хорошего ИИ к решениям людей. Эксперимент давал доступ 180 радиологам к ИИ случайным образом и распределял кейсы рентгенов пациентов.
Результаты: отдельно ИИ и отдельно профессионалы делают работу лучше, чем совместно ИИ и профессионалы. Как ни удивительно, улучшение предсказаний происходит только в случае "понятных кейсов", когда и сами радиологи бы справились; а в случае менее понятных - ИИ только добавляет неопределённости решениям.
Авторы показали, как улучшить результаты - нужна дополнительная инструкция использования ИИ, чтобы люди могли учесть свои "сдвиги восприятия". То есть приходится обучать применению, а "просто так" может не сработать.
#AI #Radiology
У многих (включая меня) теплится надежда на то, что искусственный интеллект (ИИ) сможет улучшить почти любые решения людей. Авторы статьи (июль 2023) показывают, что пока это убеждение слишком смелое. Они исследуют, что происходит в радиологии при добавлении хорошего ИИ к решениям людей. Эксперимент давал доступ 180 радиологам к ИИ случайным образом и распределял кейсы рентгенов пациентов.
Результаты: отдельно ИИ и отдельно профессионалы делают работу лучше, чем совместно ИИ и профессионалы. Как ни удивительно, улучшение предсказаний происходит только в случае "понятных кейсов", когда и сами радиологи бы справились; а в случае менее понятных - ИИ только добавляет неопределённости решениям.
Авторы показали, как улучшить результаты - нужна дополнительная инструкция использования ИИ, чтобы люди могли учесть свои "сдвиги восприятия". То есть приходится обучать применению, а "просто так" может не сработать.
#AI #Radiology
NBER
Combining Human Expertise with Artificial Intelligence: Experimental Evidence from Radiology
While Artificial Intelligence (AI) algorithms have achieved performance levels comparable to human experts on various predictive tasks, human experts can still access valuable contextual information not yet incorporated into AI predictions. Humans assisted…
Про производительность и цифровую революцию.
Если смотреть на данные 21 века, мы не увидим большого влияния "цифровой революции" от айфонов или облачных вычислений на рост производительности. Статья (август 2023) напоминает, почему так произошло. Два больших аргумента - это
1) концентрация выгод. Не все компании успешно используют новые технологии, только самый топ получает преимущество. Это видно в стоимости MAFANG (Microsoft, Apple, Face, Amazon, Netflix, Google) в последние годы - они заняли около 20% по капитализации в S&P 500. Ещё в 2013 году они занимали порядка 7% - то есть десять лет росли быстрее общего индекса. И это сигнал про то, что мы в эпохе "монополистической конкуренции", крупные компании концентрируют выгоды от новых идей;
2) технологии ещё не дошли до зрелости. В предыдущие три "промышленных революции" (паровой двигатель; электричество; ИТ) от момента изобретения до воплощения в продукты прошло по 40-50 лет. Несмотря на уже пришедшие к нам продукты "четвёртой", мы можем увидеть полноценное использование позже. Более того, движение в сторону "искусственного интеллекта" будет относительно медленным, даже при уже видимых успехах применения.
Мне кажется важным, что "общая производительность" много лет растёт не так, как хочется ожидать с учётом нашего ежедневного опыта. Это довольно не интуитивное утверждение - макроуровень учитывает, например, что автоматизация приводит к переходу сотрудников в менее производительные отрасли, в том числе услуги, или даже уходу с рынка труда (в "экономически не активные"). Поэтому во всей экономике требуется "широкое применение нового", чтобы получить существенные выгоды от технологий.
Производительность: https://yangx.top/olegshibanov/1196
MAFANG: https://yangx.top/olegshibanov/1197
#AI #Macro #Digital #Productivity #Solow
Если смотреть на данные 21 века, мы не увидим большого влияния "цифровой революции" от айфонов или облачных вычислений на рост производительности. Статья (август 2023) напоминает, почему так произошло. Два больших аргумента - это
1) концентрация выгод. Не все компании успешно используют новые технологии, только самый топ получает преимущество. Это видно в стоимости MAFANG (Microsoft, Apple, Face, Amazon, Netflix, Google) в последние годы - они заняли около 20% по капитализации в S&P 500. Ещё в 2013 году они занимали порядка 7% - то есть десять лет росли быстрее общего индекса. И это сигнал про то, что мы в эпохе "монополистической конкуренции", крупные компании концентрируют выгоды от новых идей;
2) технологии ещё не дошли до зрелости. В предыдущие три "промышленных революции" (паровой двигатель; электричество; ИТ) от момента изобретения до воплощения в продукты прошло по 40-50 лет. Несмотря на уже пришедшие к нам продукты "четвёртой", мы можем увидеть полноценное использование позже. Более того, движение в сторону "искусственного интеллекта" будет относительно медленным, даже при уже видимых успехах применения.
Мне кажется важным, что "общая производительность" много лет растёт не так, как хочется ожидать с учётом нашего ежедневного опыта. Это довольно не интуитивное утверждение - макроуровень учитывает, например, что автоматизация приводит к переходу сотрудников в менее производительные отрасли, в том числе услуги, или даже уходу с рынка труда (в "экономически не активные"). Поэтому во всей экономике требуется "широкое применение нового", чтобы получить существенные выгоды от технологий.
Производительность: https://yangx.top/olegshibanov/1196
MAFANG: https://yangx.top/olegshibanov/1197
#AI #Macro #Digital #Productivity #Solow
Почему стоит использовать ChatGPT, Bard и т.п. не только в учёбе?
Потому что GPT помогают!
Статья (июль 2023) проверила, насколько улучшаются скорость написания и качество текстов при вовлечении ChatGPT-3.5. Результаты прекрасны: время работы снижается на 40%, качество растёт на 18%. Кажется, многие журналисты были бы рады такой помощи.
Я только что попробовал сгенерить код к одной задаче из своих домашних заданий в Bard Google. За 10 секунд почти готовый результат на Python, надо только данные подкрутить и дать доступ к ним.
Поэтому очень хочется, чтобы мы пользовались всеми возможностями современных технологий. Если кто-то пишет код с нуля и через чтение документации - честь ему и хвала, это будущий великий программист. Но если вы используете код как вспомогательную часть процесса (а главное - что-то иное, например, регрессии), то обидно было бы игнорировать удобный инструмент. На StackOverflow мы все ходили, теперь ситуация стала даже проще.
#AI #GPT #Teaching
Потому что GPT помогают!
Статья (июль 2023) проверила, насколько улучшаются скорость написания и качество текстов при вовлечении ChatGPT-3.5. Результаты прекрасны: время работы снижается на 40%, качество растёт на 18%. Кажется, многие журналисты были бы рады такой помощи.
Я только что попробовал сгенерить код к одной задаче из своих домашних заданий в Bard Google. За 10 секунд почти готовый результат на Python, надо только данные подкрутить и дать доступ к ним.
Поэтому очень хочется, чтобы мы пользовались всеми возможностями современных технологий. Если кто-то пишет код с нуля и через чтение документации - честь ему и хвала, это будущий великий программист. Но если вы используете код как вспомогательную часть процесса (а главное - что-то иное, например, регрессии), то обидно было бы игнорировать удобный инструмент. На StackOverflow мы все ходили, теперь ситуация стала даже проще.
#AI #GPT #Teaching
Прекрасное открытие в скоринговых моделях 😂 (статья август 2023 по данным бразильских фирм):
"Because the population of loans is not homogeneous across banks, segmented models may provide estimates that are more suited to different segments of the population. The insights of our model risk measure allow us to challenge the generally accepted assumption that more data (i.e., a larger number of observations) will lead to better quality inferences."
То есть: оценки, которые можно сделать на выборках в индивидуальных банках, могут оказаться лучше, чем модели на объединённой выборке всех банков. Это свойство "не-гомогенности", то есть существенной разницы характеристик компаний в разных банках, мешает сработать лучше с более широким набором данных.
И в целом интересная статья про "модельный риск". Вероятность того, что удалось сделать "идеальный набор переменных с идеальной оценкой связей", всегда нулевая. Надо как-то ловить проблемы, связанные с неточностями моделей, и авторы показывают, как это можно сделать через скалярную метрику.
(А читать эти статьи можно тут: https://yangx.top/workingpaper)
#Scoring #AI #Banks #Firms
"Because the population of loans is not homogeneous across banks, segmented models may provide estimates that are more suited to different segments of the population. The insights of our model risk measure allow us to challenge the generally accepted assumption that more data (i.e., a larger number of observations) will lead to better quality inferences."
То есть: оценки, которые можно сделать на выборках в индивидуальных банках, могут оказаться лучше, чем модели на объединённой выборке всех банков. Это свойство "не-гомогенности", то есть существенной разницы характеристик компаний в разных банках, мешает сработать лучше с более широким набором данных.
И в целом интересная статья про "модельный риск". Вероятность того, что удалось сделать "идеальный набор переменных с идеальной оценкой связей", всегда нулевая. Надо как-то ловить проблемы, связанные с неточностями моделей, и авторы показывают, как это можно сделать через скалярную метрику.
(А читать эти статьи можно тут: https://yangx.top/workingpaper)
#Scoring #AI #Banks #Firms
Telegram
РАБОЧИЕ БУМАГИ 🗝
Рабочие бумаги центральных банков
Предложения по источникам: @co1ldbot
📎 Холодный расчет - @c0ldness
Предложения по источникам: @co1ldbot
📎 Холодный расчет - @c0ldness
Рынок труда: теперь Писсаридес.
Дискуссия про навыки в мире искусственного интеллекта (ИИ) продолжается. Теперь высказался нобелевский лауреат Писсаридес. Кратко: изучать математику бесполезно, потому что в будущем останутся в основном профессии с эмоциональным интеллектом, человеческим общением и заботой друг о друге.
Звучит интересно. Но в чём проблема с этими предсказаниями: оценка влияния сейчас весьма предварительная. Если вы помните, ИТ-сектор также должен был значительно изменить профессии. Но как показал дальнейший опыт, эти изобретения стали дополняющими, а не заменяющими (см. статью Аджемоглу 2000). И поэтому рынок труда почти не изменился, просто дополнился компьютерными навыками.
Вывод: если студент склонен к математике, надо ей и заниматься. Если когда-то ИИ станут достаточно сильными для замены офисных сотрудников, мир станет настолько другим, что первое образование окажется неважным.
#Labor #AI
Дискуссия про навыки в мире искусственного интеллекта (ИИ) продолжается. Теперь высказался нобелевский лауреат Писсаридес. Кратко: изучать математику бесполезно, потому что в будущем останутся в основном профессии с эмоциональным интеллектом, человеческим общением и заботой друг о друге.
Звучит интересно. Но в чём проблема с этими предсказаниями: оценка влияния сейчас весьма предварительная. Если вы помните, ИТ-сектор также должен был значительно изменить профессии. Но как показал дальнейший опыт, эти изобретения стали дополняющими, а не заменяющими (см. статью Аджемоглу 2000). И поэтому рынок труда почти не изменился, просто дополнился компьютерными навыками.
Вывод: если студент склонен к математике, надо ей и заниматься. Если когда-то ИИ станут достаточно сильными для замены офисных сотрудников, мир станет настолько другим, что первое образование окажется неважным.
#Labor #AI
РБК
Нобелевский лауреат посоветовал молодежи не спешить в айтишники
Профессии, которые кажутся сейчас привлекательными, в будущем приведут к проигрышу, считает профессор Кристофер Писсаридес. Он призвал выбирать «эмпатичные» специальности, которые не сможет заменить
Инвестиции в ИИ: на уровне страны увеличивают неравенство?
Любопытная статья (октябрь 2023) проверяет влияние инвестиций в "искусственный интеллект" (ИИ) на экономические переменные. Авторы берут 86 стран и горизонт 2010-2019, и связывают инвестиции в ИИ с доходами граждан, производительностью экономики и т.п. Основные результаты такие: более высокие инвестиции в ИИ
1) связаны с ростом доли дохода людей из верхних 10% доходов и снижением доли дохода людей из нижних 10% дохода = "рост неравенства";
2) приводят к снижению общей занятости в экономике;
3) дают переток из "среднего уровня навыков" в "высокий уровень навыков" и менеджерские позиции;
4) увеличивают производительность (total factor productivity);
5) а наиболее сильное увеличение неравенства давали инвестиции в роботизацию, ИИ в стройке и связанные с интернетом сервисы.
Звучит как минимум любопытно. При этом авторы говорят, что их выводы едва ли применимы к моделям, которые захватывают рынок после 2022 и ChatGPT - вероятно, их влияние может быть ещё более существенным.
Но. Меня смущают подобные выводы на макроуровне. Дело в том, что 2010-е были временем большого эксперимента в экономиках мира, и надо контролировать на десятки переменных - ставки (низкие могут увеличивать неравенство), старение населения (может снижать занятость), образование (кажется, был рост зарплатной премии за университет по миру), и т.п. Более богатые страны могли позволить себе высокие инвестиции в ИИ - и при этом неравенство в них росло по множеству причин, включая огромную отдачу на идеи через венчурный капитал. Поэтому надо крепко думать про госполитику в отношении последствий ИИ, но не забывать, что главными источниками могут быть совсем не инвестиции в ИИ.
Вывод: интересно, но из макроданных сложно сделать выводы о причинно-следственных связях. Нужно заранее обдумывать, как реагировать на вытеснение людей из рынка труда с ростом использования ИИ.
(А находить эти статьи можно тут: https://yangx.top/workingpaper)
#AI #Inequality #Labor
Любопытная статья (октябрь 2023) проверяет влияние инвестиций в "искусственный интеллект" (ИИ) на экономические переменные. Авторы берут 86 стран и горизонт 2010-2019, и связывают инвестиции в ИИ с доходами граждан, производительностью экономики и т.п. Основные результаты такие: более высокие инвестиции в ИИ
1) связаны с ростом доли дохода людей из верхних 10% доходов и снижением доли дохода людей из нижних 10% дохода = "рост неравенства";
2) приводят к снижению общей занятости в экономике;
3) дают переток из "среднего уровня навыков" в "высокий уровень навыков" и менеджерские позиции;
4) увеличивают производительность (total factor productivity);
5) а наиболее сильное увеличение неравенства давали инвестиции в роботизацию, ИИ в стройке и связанные с интернетом сервисы.
Звучит как минимум любопытно. При этом авторы говорят, что их выводы едва ли применимы к моделям, которые захватывают рынок после 2022 и ChatGPT - вероятно, их влияние может быть ещё более существенным.
Но. Меня смущают подобные выводы на макроуровне. Дело в том, что 2010-е были временем большого эксперимента в экономиках мира, и надо контролировать на десятки переменных - ставки (низкие могут увеличивать неравенство), старение населения (может снижать занятость), образование (кажется, был рост зарплатной премии за университет по миру), и т.п. Более богатые страны могли позволить себе высокие инвестиции в ИИ - и при этом неравенство в них росло по множеству причин, включая огромную отдачу на идеи через венчурный капитал. Поэтому надо крепко думать про госполитику в отношении последствий ИИ, но не забывать, что главными источниками могут быть совсем не инвестиции в ИИ.
Вывод: интересно, но из макроданных сложно сделать выводы о причинно-следственных связях. Нужно заранее обдумывать, как реагировать на вытеснение людей из рынка труда с ростом использования ИИ.
(А находить эти статьи можно тут: https://yangx.top/workingpaper)
#AI #Inequality #Labor
www.bis.org
Artificial intelligence, services globalisation and income inequality
How does economic activity related to artificial intelligence (AI) impact the income of various groups in an economy? This study, using a panel of 86 countries over 2010–19, finds that investment in AI is associated with higher income inequality.
ИИ и инфляция: что сильнее, спрос или предложение?
Статья (апрель 2024) исследует влияние развития искусственного интеллекта на инфляцию в теоретической модели. Основная идея довольно простая - если ИИ увеличит предложение сильнее, чем спрос, то инфляция замедлится; в противном случае она вырастет из-за повышения инвестиций и покупок граждан. Авторы стараются связать ИИ с повышением производительности в отраслях за счёт аккуратного подсчёта потенциального замещения человеческого труда.
Мне не нравятся две вещи:
1) Оценка роста производительности от внедрения ИИ крайне произвольная. Если ещё точнее - авторы калибруют модель так, чтобы средний рост "полной факторной производительности" (TFP "по Солоу") был бы равен 1,5% годовых за 10 лет. Но почему такое число? Например, в США за 2010-2019 вкл. рост составил всего 5,76% - менее 1% в год. За 2000-2019 рост также невелик, около 13% и снова менее 1% в год.
2) Вообще не учитывается возникновение "новых отраслей". Дело в том, что замена людей (например, в журналистике или сценариях) заставляет всех нас искать другую работу - и вероятно, что в менее производительной области, например, уход за пожилыми или доставка. В результате общие эффекты для экономики могут оказаться менее значительными, чем подразумевает привлекательность использования ИИ.
Вывод: ещё один интересный кирпичик, но пока ограниченные по содержанию результаты.
(А находить эти статьи можно тут: https://yangx.top/workingpaper)
#AI #Inflation #Productivity
Статья (апрель 2024) исследует влияние развития искусственного интеллекта на инфляцию в теоретической модели. Основная идея довольно простая - если ИИ увеличит предложение сильнее, чем спрос, то инфляция замедлится; в противном случае она вырастет из-за повышения инвестиций и покупок граждан. Авторы стараются связать ИИ с повышением производительности в отраслях за счёт аккуратного подсчёта потенциального замещения человеческого труда.
Мне не нравятся две вещи:
1) Оценка роста производительности от внедрения ИИ крайне произвольная. Если ещё точнее - авторы калибруют модель так, чтобы средний рост "полной факторной производительности" (TFP "по Солоу") был бы равен 1,5% годовых за 10 лет. Но почему такое число? Например, в США за 2010-2019 вкл. рост составил всего 5,76% - менее 1% в год. За 2000-2019 рост также невелик, около 13% и снова менее 1% в год.
2) Вообще не учитывается возникновение "новых отраслей". Дело в том, что замена людей (например, в журналистике или сценариях) заставляет всех нас искать другую работу - и вероятно, что в менее производительной области, например, уход за пожилыми или доставка. В результате общие эффекты для экономики могут оказаться менее значительными, чем подразумевает привлекательность использования ИИ.
Вывод: ещё один интересный кирпичик, но пока ограниченные по содержанию результаты.
(А находить эти статьи можно тут: https://yangx.top/workingpaper)
#AI #Inflation #Productivity
www.bis.org
The impact of artificial intelligence on output and inflation
This paper studies the effects of artificial intelligence (AI) on sectoral and aggregate employment, output and inflation in both the short and long run. We construct an index of industry exposure to AI to calibrate a macroeconomic multi-sector model...
Языковые модели (ChatGPT+) и финансовые переменные.
Коллеги показали статью (май 2024), которая применяет ChatGTP4 Turbo к прогнозированию прибылей компаний США, а также доходностей акций. Что авторы сделали:
1) Аккуратно скрыли от модели информацию о компании и даже годе, стандартизировав отчётность;
2) Постарались понять, как именно рассуждает модель, и что является главными частями её прогнозов.
Результаты:
1) Направление изменения прибылей в следующем году ChatGPT4 делает лучше консенсуса аналитиков (ChatGPT3.5 заметно хуже) - условно 60% правильно против 53%. Более того, обыграны и ML-модели, и даже нейронная сеть;
2) Портфель акций, построенных на этих предсказаниях, имеет огромную альфу к трёхфакторной модели Фамы-Френча (12% в год!).
Мои вопросы:
1) Точно-точно нет "подглядывания в будущие данные"? Авторы стараются показать, что нет, но это неубедительно - неумение "предсказать" год или компанию не означают, что модель не "запомнила" финансовые связи из обучающих данных. Более того, качество прогнозов ухудшается с годами - это подозрительно;
2) Построение портфеля ну очень коварное (если вы посмотрите текст). Там столько ручных допиливаний, что непонятно, с чем сравнивать - объективно это не простой "пассивный портфель", который по сути получается в рамках модели Фамы-Френча. Поэтому я был бы осторожен в интерпретации.
Но в любом случае - новые интересные идеи, будем со студентами разбираться!
#AI #Portfolio #Earnings #MAFNES
Коллеги показали статью (май 2024), которая применяет ChatGTP4 Turbo к прогнозированию прибылей компаний США, а также доходностей акций. Что авторы сделали:
1) Аккуратно скрыли от модели информацию о компании и даже годе, стандартизировав отчётность;
2) Постарались понять, как именно рассуждает модель, и что является главными частями её прогнозов.
Результаты:
1) Направление изменения прибылей в следующем году ChatGPT4 делает лучше консенсуса аналитиков (ChatGPT3.5 заметно хуже) - условно 60% правильно против 53%. Более того, обыграны и ML-модели, и даже нейронная сеть;
2) Портфель акций, построенных на этих предсказаниях, имеет огромную альфу к трёхфакторной модели Фамы-Френча (12% в год!).
Мои вопросы:
1) Точно-точно нет "подглядывания в будущие данные"? Авторы стараются показать, что нет, но это неубедительно - неумение "предсказать" год или компанию не означают, что модель не "запомнила" финансовые связи из обучающих данных. Более того, качество прогнозов ухудшается с годами - это подозрительно;
2) Построение портфеля ну очень коварное (если вы посмотрите текст). Там столько ручных допиливаний, что непонятно, с чем сравнивать - объективно это не простой "пассивный портфель", который по сути получается в рамках модели Фамы-Френча. Поэтому я был бы осторожен в интерпретации.
Но в любом случае - новые интересные идеи, будем со студентами разбираться!
#AI #Portfolio #Earnings #MAFNES
Ssrn
Financial Statement Analysis with Large Language Models
We investigate whether large language models (LLMs) can successfully perform financial statement analysis in a way similar to a professional human analyst
Снова про производительность и труд.
Аджемоглу продолжает исследовать историю. Статья (май 2024) показывает, как в первую индустриальную революцию развивалась производительность и зарплаты. Выводы говорят сами за себя:
1) Производство хлопка стало одним из крупнейших секторов экономики Великобритании, но реальные зарплаты в нём не росли десятилетиями;
2) Автоматизация производства привела к постоянному надзору за сотрудниками, низкой автономности работы и ухудшению их здоровья;
3) Сотрудники не могли выбивать рост зарплат, так как не было расширения рынка труда около автоматизирующихся отраслей (и некуда было идти);
4) Искусственный интеллект сегодня может также повысить среднюю производительность, но не увеличить доходы или занятость людей - будет "замена", а не "сотрудничество".
Это выводы как в книге. Но важно помнить об этом - рынок труда сложный, и от внедрения новых технологий можно получить рост неравенства, что пользы особо не принесёт.
#AI #Acemoglu #Labor
Аджемоглу продолжает исследовать историю. Статья (май 2024) показывает, как в первую индустриальную революцию развивалась производительность и зарплаты. Выводы говорят сами за себя:
1) Производство хлопка стало одним из крупнейших секторов экономики Великобритании, но реальные зарплаты в нём не росли десятилетиями;
2) Автоматизация производства привела к постоянному надзору за сотрудниками, низкой автономности работы и ухудшению их здоровья;
3) Сотрудники не могли выбивать рост зарплат, так как не было расширения рынка труда около автоматизирующихся отраслей (и некуда было идти);
4) Искусственный интеллект сегодня может также повысить среднюю производительность, но не увеличить доходы или занятость людей - будет "замена", а не "сотрудничество".
Это выводы как в книге. Но важно помнить об этом - рынок труда сложный, и от внедрения новых технологий можно получить рост неравенства, что пользы особо не принесёт.
#AI #Acemoglu #Labor
NBER
Learning from Ricardo and Thompson: Machinery and Labor in the Early Industrial Revolution, and in the Age of AI
David Ricardo initially believed machinery would help workers but revised his opinion, likely based on the impact of automation in the textile industry. Despite cotton textiles becoming one of the largest sectors in the British economy, real wages for cotton…
Зарисовки про ИИ.
Как вы видели из квартальных отчётов бигтехов США, компании готовятся инвестировать много миллиардов в физическую инфраструктуру для ИИ. А инвесторы задумываются, оправданы ли эти инвестиции - видимо, есть неверующие в "почти сильный ИИ (AGI)". Микрософт прямо заявил, что лучше понимает будущую пользу от инвестиций, и продолжит их, несмотря на скепсис акционеров.
Кажется, что несколько вопросов, связанных с ИИ, показывают противоречивое влияние его на жизнь людей:
1) по "простым тестам" ("когда родился Александр Сергеевич Пушкин, поэт и писатель из России") даже лучшие LLM-модели продолжают давать плохие ответы. Видимо, у ChatGPT-o1 всего 42.5% точных ответов из более чем 4000 - то есть пока полагаться на качество информации не стоит;
2) очень интересное упражнение (октябрь 2024) по уточнению теории взаимодействия внутри организации - что остаётся сложной задачей даже в экспериментах с людьми, а здесь авторы смогли заметно упростить и удешевить проверку. Более того (октябрь 2024), в экспериментах ChatGPT уже активно используется;
3) а насколько на макро уровне полезны огромные инвестиции компаний - пока вообще неясно. Как с "интернетом" получилось не впечатляюще, так и текущие оценки Банка Канады (май 2024) показывают небольшое влияние цифровизации на рост (порядка +0,15 пп). А исследование (октябрь 2024) показывает, что нужен рост производительности и роста ВВП на 3 пп в год к 2030, чтобы покрывать издержки на дата центры и обучение моделей.
Так что скепсис инвесторов понятен. Сможет ли отдельная компания оправдать инвестиции - наверное, да, потому что околомонопольная позиция поможет. А будут ли на уровне всей экономики большие выгоды - зависит от широты использования ИИ в экономике.
(Вот общий тред: https://emcr.io/news/threads/6586833f0fec2)
#AI #Firms #Growth #Productivity
Как вы видели из квартальных отчётов бигтехов США, компании готовятся инвестировать много миллиардов в физическую инфраструктуру для ИИ. А инвесторы задумываются, оправданы ли эти инвестиции - видимо, есть неверующие в "почти сильный ИИ (AGI)". Микрософт прямо заявил, что лучше понимает будущую пользу от инвестиций, и продолжит их, несмотря на скепсис акционеров.
Кажется, что несколько вопросов, связанных с ИИ, показывают противоречивое влияние его на жизнь людей:
1) по "простым тестам" ("когда родился Александр Сергеевич Пушкин, поэт и писатель из России") даже лучшие LLM-модели продолжают давать плохие ответы. Видимо, у ChatGPT-o1 всего 42.5% точных ответов из более чем 4000 - то есть пока полагаться на качество информации не стоит;
2) очень интересное упражнение (октябрь 2024) по уточнению теории взаимодействия внутри организации - что остаётся сложной задачей даже в экспериментах с людьми, а здесь авторы смогли заметно упростить и удешевить проверку. Более того (октябрь 2024), в экспериментах ChatGPT уже активно используется;
3) а насколько на макро уровне полезны огромные инвестиции компаний - пока вообще неясно. Как с "интернетом" получилось не впечатляюще, так и текущие оценки Банка Канады (май 2024) показывают небольшое влияние цифровизации на рост (порядка +0,15 пп). А исследование (октябрь 2024) показывает, что нужен рост производительности и роста ВВП на 3 пп в год к 2030, чтобы покрывать издержки на дата центры и обучение моделей.
Так что скепсис инвесторов понятен. Сможет ли отдельная компания оправдать инвестиции - наверное, да, потому что околомонопольная позиция поможет. А будут ли на уровне всей экономики большие выгоды - зависит от широты использования ИИ в экономике.
(Вот общий тред: https://emcr.io/news/threads/6586833f0fec2)
#AI #Firms #Growth #Productivity
Reuters
Big Tech's AI splurge worries investors about returns
Big technology companies including Microsoft , Meta and Amazon are stepping up spending to build out AI data centers in a rush to meet vast demand, but Wall Street is hungry for a quicker payday on the billions invested.
Языковые модели и прогнозы инфляции: почему я скептичен?
Эконс напоминает про исследование (октябрь 2024) прогнозов "большой языковой модели" (LLM) от Гугла. Авторы задают LLM условные вопросы "какой прогноз на ближайшие 1-4 квартала, если ты находишься в точке t", и затем сравнивают результаты с опросами аналитиков (Survey of professional forecasters). Горизонт времени 2019-2023.
Основной результат - что точность LLM выше, ошибка в среднем ниже. Но есть небольшая деталь: результат целиком зависит от 2021 года, а в остальном прогнозы как попало сравниваются. Посмотрите таблицу ниже - очень показательно. Не говоря о том, что LLM может видеть информацию о будущих годах, когда делает прогноз, и авторы это не могут проконтролировать.
Вывод: неубедительно. Нужны более аккуратные исследования.
#Inflation #US #AI
Эконс напоминает про исследование (октябрь 2024) прогнозов "большой языковой модели" (LLM) от Гугла. Авторы задают LLM условные вопросы "какой прогноз на ближайшие 1-4 квартала, если ты находишься в точке t", и затем сравнивают результаты с опросами аналитиков (Survey of professional forecasters). Горизонт времени 2019-2023.
Основной результат - что точность LLM выше, ошибка в среднем ниже. Но есть небольшая деталь: результат целиком зависит от 2021 года, а в остальном прогнозы как попало сравниваются. Посмотрите таблицу ниже - очень показательно. Не говоря о том, что LLM может видеть информацию о будущих годах, когда делает прогноз, и авторы это не могут проконтролировать.
Вывод: неубедительно. Нужны более аккуратные исследования.
#Inflation #US #AI
Telegram
ECONS
Открытый портал в экономику. Пишем об актуальных экономических исследованиях и о том, как они повлияют на жизнь.
https://econs.online
Заявление в РКН — № 4980501540
https://econs.online
Заявление в РКН — № 4980501540
Машинное обучение и рецессии: сразу по 20 странам.
Очередное применение машинного обучения (МО, ноябрь 2024). Авторы показывают, что наиболее успешным алгоритмом для прогнозов рецессий в 20 странах ОЭСР является "жесткий алгоритм" МО. Он сначала по историческим данным выбирает лучшие наборы переменных, а затем по ним строит предсказания. Такой алгоритм превосходит всё остальное, что они попробовали, в том числе индивидуальные модели для отдельных стран.
Вывод: опять МО значительно улучшают прогнозы. "Ансамбли моделей" обязаны включать МО как один из инструментов.
#ML #Recessions #AI
Очередное применение машинного обучения (МО, ноябрь 2024). Авторы показывают, что наиболее успешным алгоритмом для прогнозов рецессий в 20 странах ОЭСР является "жесткий алгоритм" МО. Он сначала по историческим данным выбирает лучшие наборы переменных, а затем по ним строит предсказания. Такой алгоритм превосходит всё остальное, что они попробовали, в том числе индивидуальные модели для отдельных стран.
Вывод: опять МО значительно улучшают прогнозы. "Ансамбли моделей" обязаны включать МО как один из инструментов.
#ML #Recessions #AI
CEPR
The role of economic judgement in enhancing machine learning models for recession prediction: Insights from 20 OECD countries
Accurately forecasting recessions remains a critical issue in macroeconomic analysis. This column introduces a new machine learning algorithm to predict recession risks for 20 OECD countries over quarterly horizons up to two years. The Doombot algorithm tests…
ML в применении к текстам: готовые пакеты.
Авторы статьи (ноябрь 2024) попробовали помочь нам с анализом текстов. Основная идея - сделать пакет в Питоне, который позволяет быстро собрать из текстов что-то "факторное", в том числе для макрофинансовых моделей прогнозов и объяснения доходностей. Они выложили пакеты - будем разбираться, как это работает. Особенно интересно было бы применять для российских новостей, и отдельно для ТГ.
Моя цель - применять такое для прогнозов макро, но наверняка постепенно это выстроится в более широкую линейку анализа текстов и выводов из них. Другой пример про новости также демонстрирует пользу от подобной информации.
#Forecasts #Python #News #Texts #AI
Авторы статьи (ноябрь 2024) попробовали помочь нам с анализом текстов. Основная идея - сделать пакет в Питоне, который позволяет быстро собрать из текстов что-то "факторное", в том числе для макрофинансовых моделей прогнозов и объяснения доходностей. Они выложили пакеты - будем разбираться, как это работает. Особенно интересно было бы применять для российских новостей, и отдельно для ТГ.
Моя цель - применять такое для прогнозов макро, но наверняка постепенно это выстроится в более широкую линейку анализа текстов и выводов из них. Другой пример про новости также демонстрирует пользу от подобной информации.
#Forecasts #Python #News #Texts #AI
NBER
Textual Factors: A Scalable, Interpretable, and Data-driven Approach to Analyzing Unstructured Information
We introduce a general approach for analyzing large-scale text-based data, combining the strengths of neural network language processing and generative statistical modeling to create a factor structure of unstructured data for downstream regressions typically…