⚡️ مدلهای زبانی GPT-OSS با فرمت GGUF توسط تیم Unsloth بهینهسازی و منتشر شدند
@rss_ai_ir
تیم توسعهدهنده Unsloth دو نسخه از مدلهای GPT-OSS با ۲۰ و ۱۲۰ میلیارد پارامتر را به فرمت GGUF تبدیل کرده و با رفع برخی ایرادات، کیفیت استنتاج (Inference) آنها را بهطور قابل توجهی افزایش دادهاند.
---
📌 پیکربندی پیشنهادی برای اجرا:
🔹 مدل با ۲۰ میلیارد پارامتر در حالت دقت کامل، تنها به ۱۴ گیگابایت حافظه رم نیاز دارد و با سرعتی بیش از ۱۰ توکن بر ثانیه اجرا میشود.
🔹 مدل ۱۲۰ میلیاردی نیز با حدود ۶۴ گیگ رم، خروجی بالای ۴۰ توکن بر ثانیه ارائه میدهد.
🔸 حتی در سیستمهایی با ۶ گیگ رم و بدون GPU هم امکان اجرا وجود دارد، اما سرعت استنتاج پایینتر خواهد بود.
---
📈 در صورت استفاده از کارت گرافیک، عملکرد مدلها بهمراتب بهتر خواهد بود.
برخی تستها با GPU قدرتمند H100 نشان دادهاند که سرعت خروجی به بیش از ۱۴۰ توکن بر ثانیه میرسد که حتی از ChatGPT نیز سریعتر است.
---
🧠 روشهای قابل استفاده برای اجرا:
اجرای مستقیم با ابزار llama.cpp
نرمافزارهای رابط مانند LM Studio
محیطهای تعاملی مانند Open WebUI
📌 مدل ۲۰B در عین سبک بودن، عملکردی نزدیک به مدلهایی مانند o3-mini دارد و برای سیستمهای ضعیفتر بسیار مناسب است.
---
🔧 نسخههایی با دقت ۴ بیت و ۱۶ بیت نیز آماده شدهاند.
نسخه ۴ بیتی حتی قابلیت فاینتیون روی کارتهای گرافیک با ۲۴ گیگابایت VRAM را دارد.
📄 مستندات کامل برای نصب و آموزش، توسط تیم Unsloth منتشر شده و گامبهگام مراحل راهاندازی را توضیح داده است.
منابع:
لینک 1
لینک 2
#مدل_زبانی #هوش_مصنوعی #GPT_OSS #Unsloth #GGUF #LLM
@rss_ai_ir
@rss_ai_ir
تیم توسعهدهنده Unsloth دو نسخه از مدلهای GPT-OSS با ۲۰ و ۱۲۰ میلیارد پارامتر را به فرمت GGUF تبدیل کرده و با رفع برخی ایرادات، کیفیت استنتاج (Inference) آنها را بهطور قابل توجهی افزایش دادهاند.
---
📌 پیکربندی پیشنهادی برای اجرا:
🔹 مدل با ۲۰ میلیارد پارامتر در حالت دقت کامل، تنها به ۱۴ گیگابایت حافظه رم نیاز دارد و با سرعتی بیش از ۱۰ توکن بر ثانیه اجرا میشود.
🔹 مدل ۱۲۰ میلیاردی نیز با حدود ۶۴ گیگ رم، خروجی بالای ۴۰ توکن بر ثانیه ارائه میدهد.
🔸 حتی در سیستمهایی با ۶ گیگ رم و بدون GPU هم امکان اجرا وجود دارد، اما سرعت استنتاج پایینتر خواهد بود.
---
📈 در صورت استفاده از کارت گرافیک، عملکرد مدلها بهمراتب بهتر خواهد بود.
برخی تستها با GPU قدرتمند H100 نشان دادهاند که سرعت خروجی به بیش از ۱۴۰ توکن بر ثانیه میرسد که حتی از ChatGPT نیز سریعتر است.
---
🧠 روشهای قابل استفاده برای اجرا:
اجرای مستقیم با ابزار llama.cpp
نرمافزارهای رابط مانند LM Studio
محیطهای تعاملی مانند Open WebUI
📌 مدل ۲۰B در عین سبک بودن، عملکردی نزدیک به مدلهایی مانند o3-mini دارد و برای سیستمهای ضعیفتر بسیار مناسب است.
---
🔧 نسخههایی با دقت ۴ بیت و ۱۶ بیت نیز آماده شدهاند.
نسخه ۴ بیتی حتی قابلیت فاینتیون روی کارتهای گرافیک با ۲۴ گیگابایت VRAM را دارد.
📄 مستندات کامل برای نصب و آموزش، توسط تیم Unsloth منتشر شده و گامبهگام مراحل راهاندازی را توضیح داده است.
منابع:
لینک 1
لینک 2
#مدل_زبانی #هوش_مصنوعی #GPT_OSS #Unsloth #GGUF #LLM
@rss_ai_ir
👍16🎉13👏11🥰9😁9❤7🔥6
📊🤖 بهبود دقت GPT-5 با پرامپت کاستوم جدید
تستها روی مدل gpt-5-nano با تلاش medium و بنچمارک MMLU-PRO نشان دادند که استفاده از نسخه سوم پرامپت کاستوم باعث افزایش دقت از 68.73٪ به 70.20٪ شده است (+1.47٪).
📌 ویژگیهای نسخه جدید
♻️استفاده از تکنیک «ساخت روبریک» در حین فکر کردن مدل
♻️ارزیابی داخلی پاسخها (۰ تا ۱۰۰) و بازنویسی در صورت کیفیت پایین
♻️حذف ترفندهای قدیمی بیاثر و بهبود فرمت خروجی
♻️بدون تحمیل جدول یا پیشنهاد اضافی مگر درخواستی باشد
📈 در نمودار دوم میبینید که تقریباً در تمام حوزهها (مهندسی، علوم کامپیوتر، شیمی، بیزینس، زیست، فیزیک و …) عملکرد کمی بهتر بوده است.
📥 پرامپت و توضیحات کامل:
github.com/DenisSergeevitch/chatgpt-custom-instructions
@rss_ai_ir 🚀 | #هوش_مصنوعی #پرامپت #GPT5 #LLM #پردازش_زبان
تستها روی مدل gpt-5-nano با تلاش medium و بنچمارک MMLU-PRO نشان دادند که استفاده از نسخه سوم پرامپت کاستوم باعث افزایش دقت از 68.73٪ به 70.20٪ شده است (+1.47٪).
📌 ویژگیهای نسخه جدید
♻️استفاده از تکنیک «ساخت روبریک» در حین فکر کردن مدل
♻️ارزیابی داخلی پاسخها (۰ تا ۱۰۰) و بازنویسی در صورت کیفیت پایین
♻️حذف ترفندهای قدیمی بیاثر و بهبود فرمت خروجی
♻️بدون تحمیل جدول یا پیشنهاد اضافی مگر درخواستی باشد
📈 در نمودار دوم میبینید که تقریباً در تمام حوزهها (مهندسی، علوم کامپیوتر، شیمی، بیزینس، زیست، فیزیک و …) عملکرد کمی بهتر بوده است.
📥 پرامپت و توضیحات کامل:
github.com/DenisSergeevitch/chatgpt-custom-instructions
@rss_ai_ir 🚀 | #هوش_مصنوعی #پرامپت #GPT5 #LLM #پردازش_زبان
🔥18❤12😁11👍9🥰7🎉6👏5
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 فاینتیونینگ کارآمد مدلهای زبانی با PEFT
✳️در پروژههای هوش مصنوعی، مخصوصاً مدلهای زبانی بزرگ (LLM)، فاینتیونینگ کامل تمام وزنها (Full Fine-Tuning) بسیار پرهزینه و نیازمند GPUهای قدرتمند است. تکنیک PEFT (Parameter-Efficient Fine-Tuning) با هدف کاهش این هزینهها معرفی شده و امروز یکی از رایجترین رویکردها برای سفارشیسازی مدلها در حوزه تخصصی است.
🔍 ایده اصلی PEFT
بهجای تغییر دادن همه پارامترهای مدل (که ممکن است میلیاردها وزن باشد)، فقط یک زیرمجموعه کوچک از پارامترها یا لایههای اضافه شده (مثل LoRA – Low-Rank Adaptation) آموزش داده میشود. وزنهای اصلی مدل پیشآموزشدیده (Pretrained Weights) ثابت میمانند و تنها ماتریسهای کمرتبهی افزوده شده بهروزرسانی میشوند.
⚙️ مهمترین روشهای PEFT
LoRA (Low-Rank Adaptation) 🟦
تزریق دو ماتریس کمرتبه (A و B) به وزنهای مدل
بهروزرسانی فقط این ماتریسها
کاهش چشمگیر تعداد پارامترهای قابلآموزش (تا 1000 برابر کمتر از Full Fine-Tuning)
Prefix-Tuning 🟧
اضافه کردن یک توالی از "توکنهای پیشوند" قابلآموزش به ورودی هر لایه ترنسفورمر
مناسب برای وظایف تولید متن (NLG) و دیالوگ
Prompt-Tuning 🟨
آموزش چند embedding بهعنوان پرامپت ثابت برای هدایت مدل مناسب برای سناریوهایی که ورودی همیشه ساختار مشخصی دارد
Adapters 🟩
اضافه کردن ماژولهای کوچک بین لایههای ترنسفورمر مدل اصلی ثابت میماند و فقط آداپترها آموزش میبینند
📊 مزایا برای پروژههای صنعتی
💾 نیاز کمتر به حافظه GPU (مثلاً 8GB هم کافی است)
⏱️ سرعت بالاتر آموزش و استقرار
🔄 قابلیت اشتراک و ترکیب ماژولهای فاینتیون (Adapter Fusion)
📦 امکان استفاده روی مدلهای خیلی بزرگ بدون منابع ابری گران
💡 کاربردهای تخصصی
♻️سفارشیسازی GPT یا LLaMA برای تحلیل متون حقوقی، پزشکی یا فنی
♻️آموزش مدلهای چندزبانه روی دادههای سازمانی محدود
♻️ایجاد نسخههای سبکتر و بهینه برای اجرا روی لبه (Edge AI)
📌 جمعبندی
روشPEFT با تمرکز روی تغییرات کمهزینه و ماژولار، فاینتیونینگ را برای همه قابلدسترس کرده است. بهجای روزها آموزش روی چندین GPU، میتوان با منابع محدود، مدلهای قدرتمند را دقیقاً مطابق نیاز حوزه تخصصی خود تنظیم کرد.
@rss_ai_ir 🤖
| #هوش_مصنوعی #LLM #PEFT #LoRA #پردازش_زبان_طبیعی
✳️در پروژههای هوش مصنوعی، مخصوصاً مدلهای زبانی بزرگ (LLM)، فاینتیونینگ کامل تمام وزنها (Full Fine-Tuning) بسیار پرهزینه و نیازمند GPUهای قدرتمند است. تکنیک PEFT (Parameter-Efficient Fine-Tuning) با هدف کاهش این هزینهها معرفی شده و امروز یکی از رایجترین رویکردها برای سفارشیسازی مدلها در حوزه تخصصی است.
🔍 ایده اصلی PEFT
بهجای تغییر دادن همه پارامترهای مدل (که ممکن است میلیاردها وزن باشد)، فقط یک زیرمجموعه کوچک از پارامترها یا لایههای اضافه شده (مثل LoRA – Low-Rank Adaptation) آموزش داده میشود. وزنهای اصلی مدل پیشآموزشدیده (Pretrained Weights) ثابت میمانند و تنها ماتریسهای کمرتبهی افزوده شده بهروزرسانی میشوند.
⚙️ مهمترین روشهای PEFT
LoRA (Low-Rank Adaptation) 🟦
تزریق دو ماتریس کمرتبه (A و B) به وزنهای مدل
بهروزرسانی فقط این ماتریسها
کاهش چشمگیر تعداد پارامترهای قابلآموزش (تا 1000 برابر کمتر از Full Fine-Tuning)
Prefix-Tuning 🟧
اضافه کردن یک توالی از "توکنهای پیشوند" قابلآموزش به ورودی هر لایه ترنسفورمر
مناسب برای وظایف تولید متن (NLG) و دیالوگ
Prompt-Tuning 🟨
آموزش چند embedding بهعنوان پرامپت ثابت برای هدایت مدل مناسب برای سناریوهایی که ورودی همیشه ساختار مشخصی دارد
Adapters 🟩
اضافه کردن ماژولهای کوچک بین لایههای ترنسفورمر مدل اصلی ثابت میماند و فقط آداپترها آموزش میبینند
📊 مزایا برای پروژههای صنعتی
💾 نیاز کمتر به حافظه GPU (مثلاً 8GB هم کافی است)
⏱️ سرعت بالاتر آموزش و استقرار
🔄 قابلیت اشتراک و ترکیب ماژولهای فاینتیون (Adapter Fusion)
📦 امکان استفاده روی مدلهای خیلی بزرگ بدون منابع ابری گران
💡 کاربردهای تخصصی
♻️سفارشیسازی GPT یا LLaMA برای تحلیل متون حقوقی، پزشکی یا فنی
♻️آموزش مدلهای چندزبانه روی دادههای سازمانی محدود
♻️ایجاد نسخههای سبکتر و بهینه برای اجرا روی لبه (Edge AI)
📌 جمعبندی
روشPEFT با تمرکز روی تغییرات کمهزینه و ماژولار، فاینتیونینگ را برای همه قابلدسترس کرده است. بهجای روزها آموزش روی چندین GPU، میتوان با منابع محدود، مدلهای قدرتمند را دقیقاً مطابق نیاز حوزه تخصصی خود تنظیم کرد.
@rss_ai_ir 🤖
| #هوش_مصنوعی #LLM #PEFT #LoRA #پردازش_زبان_طبیعی
😁9🎉8🔥7👏6❤3🥰3👍1
📊 نتایج مقایسه مدلهای هوش مصنوعی در معیار AlgoTune نشان میدهد که مدلهای کوچکتر مانند o4-mini و DeepSeek R1 با بودجه بسیار کمتر، شتاب بالایی ایجاد میکنند.
🔹 نکات کلیدی:
✳️مدل o4-mini با امتیاز 1.71x و R1 با 1.69x در صدر قرار دارند.
✳️حتی با بودجه ۰.۱ دلار، این دو مدل به امتیازی بهتر از Claude Opus در بودجه کامل ۱ دلار میرسند.
✳️بیشترین رشد عملکرد مدلهای کوچک قبل از ۰.۵ دلار اتفاق میافتد و پس از آن شیب افزایش کاهش مییابد.
✳️رویکرد budget-constrained benchmarking هرچند در کاربرد عملی محدودیتهایی دارد، اما برای تحقیقات دانشگاهی و پروژههای دانشجویی میتواند بسیار ارزشمند باشد.
#هوش_مصنوعی #LLM #بنچمارک #بهینهسازی_الگوریتم
@rss_ai_ir 🚀
🔹 نکات کلیدی:
✳️مدل o4-mini با امتیاز 1.71x و R1 با 1.69x در صدر قرار دارند.
✳️حتی با بودجه ۰.۱ دلار، این دو مدل به امتیازی بهتر از Claude Opus در بودجه کامل ۱ دلار میرسند.
✳️بیشترین رشد عملکرد مدلهای کوچک قبل از ۰.۵ دلار اتفاق میافتد و پس از آن شیب افزایش کاهش مییابد.
✳️رویکرد budget-constrained benchmarking هرچند در کاربرد عملی محدودیتهایی دارد، اما برای تحقیقات دانشگاهی و پروژههای دانشجویی میتواند بسیار ارزشمند باشد.
#هوش_مصنوعی #LLM #بنچمارک #بهینهسازی_الگوریتم
@rss_ai_ir 🚀
🔥10😁6❤4👍4🎉2
مدیر سابق گوگل David Petrou که به خاطر کار روی Google Goggles و Google Glass شناخته میشود، استارتاپی به نام Continua راهاندازی کرده است 💬🤖 — یک عامل هوش مصنوعی که میتواند به گروههای چت در SMS، iMessage و Discord بپیوندد تا در هماهنگی برنامهها، مدیریت وظایف و کاهش شلوغی گفتگو کمک کند.
---
✨ جزئیات کلیدی
♻️جذب سرمایه ۸ میلیون دلاری در دور Seed به رهبری GV با مشارکت Bessemer Venture Partners و سرمایهگذاران فرشته.
♻️قابلیتهایی مانند تنظیم یادآور، برگزاری نظرسنجی، ایجاد اسناد و پاسخگویی به سوالات در پیام خصوصی (DM).
♻️آموزش ویژه برای مدیریت مکالمات چندنفره با هوش اجتماعی.
♻️امکان افزودن مستقیم Continua به گروهها و تعیین میزان مشارکت آن توسط کاربر.
---
🎯 هدف این پروژه، تبدیل مدلهای زبانی بزرگ (LLM) به بخشی طبیعی و بدون مزاحمت از هماهنگی روزمره در گروههاست.
#هوش_مصنوعی 🤖 #استارتاپ 🚀 #چت_بات 💬 #مدیریت_وظایف 📅 #LLM
---
✨ جزئیات کلیدی
♻️جذب سرمایه ۸ میلیون دلاری در دور Seed به رهبری GV با مشارکت Bessemer Venture Partners و سرمایهگذاران فرشته.
♻️قابلیتهایی مانند تنظیم یادآور، برگزاری نظرسنجی، ایجاد اسناد و پاسخگویی به سوالات در پیام خصوصی (DM).
♻️آموزش ویژه برای مدیریت مکالمات چندنفره با هوش اجتماعی.
♻️امکان افزودن مستقیم Continua به گروهها و تعیین میزان مشارکت آن توسط کاربر.
---
🎯 هدف این پروژه، تبدیل مدلهای زبانی بزرگ (LLM) به بخشی طبیعی و بدون مزاحمت از هماهنگی روزمره در گروههاست.
#هوش_مصنوعی 🤖 #استارتاپ 🚀 #چت_بات 💬 #مدیریت_وظایف 📅 #LLM
🎉9😁7❤5🔥3👍2