⚡️ مدلهای زبانی GPT-OSS با فرمت GGUF توسط تیم Unsloth بهینهسازی و منتشر شدند
@rss_ai_ir
تیم توسعهدهنده Unsloth دو نسخه از مدلهای GPT-OSS با ۲۰ و ۱۲۰ میلیارد پارامتر را به فرمت GGUF تبدیل کرده و با رفع برخی ایرادات، کیفیت استنتاج (Inference) آنها را بهطور قابل توجهی افزایش دادهاند.
---
📌 پیکربندی پیشنهادی برای اجرا:
🔹 مدل با ۲۰ میلیارد پارامتر در حالت دقت کامل، تنها به ۱۴ گیگابایت حافظه رم نیاز دارد و با سرعتی بیش از ۱۰ توکن بر ثانیه اجرا میشود.
🔹 مدل ۱۲۰ میلیاردی نیز با حدود ۶۴ گیگ رم، خروجی بالای ۴۰ توکن بر ثانیه ارائه میدهد.
🔸 حتی در سیستمهایی با ۶ گیگ رم و بدون GPU هم امکان اجرا وجود دارد، اما سرعت استنتاج پایینتر خواهد بود.
---
📈 در صورت استفاده از کارت گرافیک، عملکرد مدلها بهمراتب بهتر خواهد بود.
برخی تستها با GPU قدرتمند H100 نشان دادهاند که سرعت خروجی به بیش از ۱۴۰ توکن بر ثانیه میرسد که حتی از ChatGPT نیز سریعتر است.
---
🧠 روشهای قابل استفاده برای اجرا:
اجرای مستقیم با ابزار llama.cpp
نرمافزارهای رابط مانند LM Studio
محیطهای تعاملی مانند Open WebUI
📌 مدل ۲۰B در عین سبک بودن، عملکردی نزدیک به مدلهایی مانند o3-mini دارد و برای سیستمهای ضعیفتر بسیار مناسب است.
---
🔧 نسخههایی با دقت ۴ بیت و ۱۶ بیت نیز آماده شدهاند.
نسخه ۴ بیتی حتی قابلیت فاینتیون روی کارتهای گرافیک با ۲۴ گیگابایت VRAM را دارد.
📄 مستندات کامل برای نصب و آموزش، توسط تیم Unsloth منتشر شده و گامبهگام مراحل راهاندازی را توضیح داده است.
منابع:
لینک 1
لینک 2
#مدل_زبانی #هوش_مصنوعی #GPT_OSS #Unsloth #GGUF #LLM
@rss_ai_ir
@rss_ai_ir
تیم توسعهدهنده Unsloth دو نسخه از مدلهای GPT-OSS با ۲۰ و ۱۲۰ میلیارد پارامتر را به فرمت GGUF تبدیل کرده و با رفع برخی ایرادات، کیفیت استنتاج (Inference) آنها را بهطور قابل توجهی افزایش دادهاند.
---
📌 پیکربندی پیشنهادی برای اجرا:
🔹 مدل با ۲۰ میلیارد پارامتر در حالت دقت کامل، تنها به ۱۴ گیگابایت حافظه رم نیاز دارد و با سرعتی بیش از ۱۰ توکن بر ثانیه اجرا میشود.
🔹 مدل ۱۲۰ میلیاردی نیز با حدود ۶۴ گیگ رم، خروجی بالای ۴۰ توکن بر ثانیه ارائه میدهد.
🔸 حتی در سیستمهایی با ۶ گیگ رم و بدون GPU هم امکان اجرا وجود دارد، اما سرعت استنتاج پایینتر خواهد بود.
---
📈 در صورت استفاده از کارت گرافیک، عملکرد مدلها بهمراتب بهتر خواهد بود.
برخی تستها با GPU قدرتمند H100 نشان دادهاند که سرعت خروجی به بیش از ۱۴۰ توکن بر ثانیه میرسد که حتی از ChatGPT نیز سریعتر است.
---
🧠 روشهای قابل استفاده برای اجرا:
اجرای مستقیم با ابزار llama.cpp
نرمافزارهای رابط مانند LM Studio
محیطهای تعاملی مانند Open WebUI
📌 مدل ۲۰B در عین سبک بودن، عملکردی نزدیک به مدلهایی مانند o3-mini دارد و برای سیستمهای ضعیفتر بسیار مناسب است.
---
🔧 نسخههایی با دقت ۴ بیت و ۱۶ بیت نیز آماده شدهاند.
نسخه ۴ بیتی حتی قابلیت فاینتیون روی کارتهای گرافیک با ۲۴ گیگابایت VRAM را دارد.
📄 مستندات کامل برای نصب و آموزش، توسط تیم Unsloth منتشر شده و گامبهگام مراحل راهاندازی را توضیح داده است.
منابع:
لینک 1
لینک 2
#مدل_زبانی #هوش_مصنوعی #GPT_OSS #Unsloth #GGUF #LLM
@rss_ai_ir
👍16🎉13👏11🥰9😁9❤7🔥6