VIRSUN
14.3K subscribers
478 photos
271 videos
2 files
282 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
加入频道
🧠 مدل GPT-5 حتی در ورودی‌های فوق‌طولانی هم دقت بالایی را حفظ می‌کند!
@rss_ai_ir

📊 نمودار بالا عملکرد مدل‌های مختلف را در مواجهه با ورودی‌های بسیار بلند (تا ۲۵۶ هزار توکن) مقایسه می‌کند. این تست با استفاده از معیار MRCR و وظیفه‌ی “2 needle” اجرا شده که بررسی می‌کند آیا مدل می‌تواند اطلاعات کلیدی را از دل متن بسیار بلند پیدا کند یا نه.

🔝 نتیجه کاملاً روشن است:
مدل GPT-5 با اختلاف قابل توجه، در تمام طول ورودی‌ها بالاترین نرخ تطابق (mean match ratio) را دارد و دقت آن حتی در ورودی ۲۵۶k همچنان نزدیک به ۹۰٪ باقی می‌ماند.

📉 در مقابل:

نسخه‌های Nano و Mini از GPT-4.1 با افزایش طول ورودی به‌شدت افت عملکرد دارند (تا زیر ۴۰٪)

مدل‌های OpenAI O3 و O4-mini هم با وجود شروع قوی، از ۶۴k به بعد دچار افت دقت می‌شوند


🎯 این یعنی GPT-5 نه تنها برای مکالمات یا تحلیل‌های کوتاه، بلکه برای کاربردهای پیچیده با متن‌های بسیار طولانی (مثل اسناد حقوقی، مقالات علمی، یا پایگاه‌ داده‌های متنی) انتخابی بی‌رقیب است.

#GPT5 #هوش_مصنوعی #OpenAI #طول_ورودی_بلند #LLM #بازیابی_اطلاعات #MemoryDepth #متن_طولانی #AItools #مدل_زبانی_پیشرفته

@rss_ai_ir
👍2🔥1👏1
🚀 پیشرفت گوگل: کاهش ۱۰هزار برابری نیاز به داده برای فاین‌تیون LLM
@rss_ai_ir

🔍 گوگل روشی مقیاس‌پذیر در Active Learning توسعه داده که حجم داده برچسب‌خورده موردنیاز برای آموزش مدل‌های زبانی بزرگ (LLM) را در وظایف پیچیده – مثل مـدراتـیـون محتوای تبلیغاتی – تا ده‌ها هزار برابر کاهش می‌دهد.

---

🛠 مراحل کار

1. مدل اولیه (LLM-0) روی کل داده پیش‌بینی و برچسب‌گذاری خودکار انجام می‌دهد.
2. داده‌ها خوشه‌بندی می‌شوند تا سخت‌ترین و مبهم‌ترین نمونه‌ها شناسایی شود.
3. تنها نمونه‌های متنوع و با بیشترین ارزش یادگیری انتخاب می‌شوند.
4. این نمونه‌ها توسط کارشناسان انسانی برچسب‌گذاری می‌شوند.
5. فرآیند آموزش → انتخاب نمونه‌های دشوار → برچسب‌گذاری → آموزش مجدد چند بار تکرار می‌شود.

---

📊 نتایج کلیدی

* کاهش از ۱۰۰هزار نمونه برچسب‌خورده به کمتر از ۵۰۰ نمونه با حفظ یا بهبود کیفیت.
* بهبود معیار Cohen’s Kappa بین ۵۵ تا ۶۵ درصد.
* در مدل‌های بزرگ عملیاتی: صرفه‌جویی ۳ تا ۴ مرتبه‌ای در داده با کیفیت برابر یا بهتر.

---

📌معیار Cohen’s Kappa چیست؟
معیاری برای سنجش میزان توافق بین دو ارزیاب (مثلاً کارشناس و مدل) با حذف اثر توافق تصادفی:

* ۰.۰ → بدون توافق
* ۰.۴۱–۰.۶۰ → توافق متوسط
* ۰.۶۱–۰.۸۰ → توافق قابل توجه
* ۰.۸۱–۱.۰۰ → توافق تقریباً کامل

مزیت نسبت به Accuracy: مناسب‌تر برای داده‌های با توزیع نامتوازن کلاس‌ها.

---

💡 مزیت‌های روش گوگل

* برچسب‌گذاری فقط روی نمونه‌های مهم
* مقیاس‌پذیر برای دیتاست‌های حجیم (صدها میلیارد نمونه)
* کاهش شدید هزینه و زمان برچسب‌گذاری
* انطباق سریع برای حوزه‌هایی با تغییرات مداوم قوانین (مانند تبلیغات، امنیت، محتوای کاربری)

---

📥 مطالعه کامل در بلاگ گوگل:
[https://research.google/blog/achieving-10000x-training-data-reduction-with-high-fidelity-labels/]

#هوش_مصنوعی #ActiveLearning #گوگل #LLM #یادگیری_ماشین #DataEfficiency
@rss_ai_ir
🔥2321🥰21😁20🎉20👏17👍12🙏1
⚡️ مدل‌های زبانی GPT-OSS با فرمت GGUF توسط تیم Unsloth بهینه‌سازی و منتشر شدند
@rss_ai_ir

تیم توسعه‌دهنده Unsloth دو نسخه از مدل‌های GPT-OSS با ۲۰ و ۱۲۰ میلیارد پارامتر را به فرمت GGUF تبدیل کرده و با رفع برخی ایرادات، کیفیت استنتاج (Inference) آن‌ها را به‌طور قابل توجهی افزایش داده‌اند.


---

📌 پیکربندی پیشنهادی برای اجرا:

🔹 مدل با ۲۰ میلیارد پارامتر در حالت دقت کامل، تنها به ۱۴ گیگابایت حافظه رم نیاز دارد و با سرعتی بیش از ۱۰ توکن بر ثانیه اجرا می‌شود.

🔹 مدل ۱۲۰ میلیاردی نیز با حدود ۶۴ گیگ رم، خروجی بالای ۴۰ توکن بر ثانیه ارائه می‌دهد.

🔸 حتی در سیستم‌هایی با ۶ گیگ رم و بدون GPU هم امکان اجرا وجود دارد، اما سرعت استنتاج پایین‌تر خواهد بود.


---

📈 در صورت استفاده از کارت گرافیک، عملکرد مدل‌ها به‌مراتب بهتر خواهد بود.
برخی تست‌ها با GPU قدرتمند H100 نشان داده‌اند که سرعت خروجی به بیش از ۱۴۰ توکن بر ثانیه می‌رسد که حتی از ChatGPT نیز سریع‌تر است.


---

🧠 روش‌های قابل استفاده برای اجرا:

اجرای مستقیم با ابزار llama.cpp

نرم‌افزارهای رابط مانند LM Studio

محیط‌های تعاملی مانند Open WebUI


📌 مدل ۲۰B در عین سبک بودن، عملکردی نزدیک به مدل‌هایی مانند o3-mini دارد و برای سیستم‌های ضعیف‌تر بسیار مناسب است.


---

🔧 نسخه‌هایی با دقت ۴ بیت و ۱۶ بیت نیز آماده شده‌اند.
نسخه ۴ بیتی حتی قابلیت فاین‌تیون روی کارت‌های گرافیک با ۲۴ گیگابایت VRAM را دارد.

📄 مستندات کامل برای نصب و آموزش، توسط تیم Unsloth منتشر شده و گام‌به‌گام مراحل راه‌اندازی را توضیح داده است.

منابع:
لینک 1

لینک 2

#مدل_زبانی #هوش_مصنوعی #GPT_OSS #Unsloth #GGUF #LLM

@rss_ai_ir
👍16🎉13👏11🥰9😁97🔥6