Physics.Math.Code
136K subscribers
5.09K photos
1.68K videos
5.81K files
4.08K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
加入频道
Media is too big
VIEW IN TELEGRAM
🧲 Магнитный двигатель — это тип вечного двигателя, который предназначен для создания вращения с помощью постоянных магнитов в статоре и роторе без внешнего источника энергии. Такой двигатель теоретически и практически нереализуем. Магнитные двигатели не следует путать с обычно используемыми двигателями с постоянными магнитами , которые питаются от внешнего источника электроэнергии.

Гипотетический магнитный двигатель работает с постоянными магнитами в статоре и роторе. Благодаря особому расположению притягивающих и отталкивающих полюсов вращательное движение ротора предположительно поддерживается постоянно. Практические реализации терпят неудачу, поскольку в магнитах нет существенной энергии, которую можно было бы использовать для движения или компенсации потерь энергии. Сила между постоянными магнитами консервативна , поскольку магнитное поле следует за потенциалом , так что работа не выполняется в течение замкнутого цикла. Через короткий промежуток времени такой двигатель прекратит движение и примет положение равновесия.

Рационализации сторонников относительно природы источника энергии различаются. Некоторые спорят только с магнитной силой, оставляя вопросы сохранения энергии в стороне. Некоторые утверждают, что постоянные магниты содержат запасенную магнитную энергию , которая будет потребляться двигателем. Такая существующая энергия ограничена энергией, затраченной при производстве магнита, которая довольно мала. Кроме того, это привело бы к быстрому уменьшению намагниченности с течением времени, чего не наблюдается. Другие рационализации включают ссылки на так называемую свободную энергию и энергию нулевой точки , не объясняя, как эти энергии высвобождаются. Другие утверждают, что их двигатели могли бы, возможно, преобразовывать тепловую энергию из окружающей среды в механическое движение ( вечный двигатель второго рода ).
#физика #наука #science #physics #магниты #резонанс #опыты #эксперименты #видеоуроки #магнетизм

💡 Physics.Math.Code // @physics_lib
⚡️ Катушка Тесла как музыкальный инструмент⚡️

Человеческое ухо воспринимает звуковые волны где-то от 20 герц до 20 килогерц, в то время, как устройство резонирует с частотой 230 кГц, что значительно превышает максимальную частоту звука, слышимую человеком. Но можно включать и выключать разряды именно с той частотой, с которой слышен нужный нам звук. [Схема]

Поющая катушка Теслы, которую иногда называют зеусафоном, торамином или музыкальной молнией, представляет собой разновидность плазменного динамика. Это разновидность твердотельной катушки Теслы, которая была модифицирована для воспроизведения музыкальных тонов путём модуляции мощности искры. В результате получается низкочастотный звук, напоминающий аналоговый синтезатор. Высокочастотный сигнал действует по сути как несущая волна; его частота значительно выше слышимых человеком звуковых частот, поэтому цифровая модуляция может воспроизводить узнаваемый тембр. Музыкальный тон возникает непосредственно при прохождении искры через воздух. Поскольку полупроводниковые катушки ограничиваются модуляцией «вкл-выкл», воспроизводимый звук состоит из прямоугольных, а не синусоидальных волн (хотя возможны простые аккорды). #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🔩 Анодирование титановых деталей позволяет изменить их цвет. Эта обработка навсегда окрашивает металл без необходимости наносить краску или гальваническое покрытие.

Существует два метода анодирования:

▪️ Электрическое анодирование. Для получения единого, равномерно тонированного цвета используется постоянный ток не менее 80 вольт и от 1 до 3 ампер. Титановый кусок помещают в ванну с проводящей жидкостью, соединённой с источником питания полосой проводящего металла. Ток применяют к металлу до получения желаемого цвета. Цвет меняется в зависимости от силы тока и используемого напряжения.

▪️ Тепловое анодирование. Технология идентична электрическому анодированию, но реакция запускается не электрическим током, а теплом. Тепловое анодирование менее точно, чем электрический метод, но оно даёт более сложные результаты, например, градиенты или разноцветные эффекты. Первый шаг — полностью очистить и высушить изделие, затем происходит непосредственное обжигание металла, пока он не изменит цвет. С помощью приближения или удаления пламени можно менять цвета и создавать узоры.

Титан – современный легкий, прочный и коррозионно-стойкий конструкционный материал. Относится к переходным металлам. Он устойчив во многих средах, при комнатной температуре, на воздухе - до 550 °C. Стойкость титана обусловлена присутствием на поверхности тонкой, но плотной оксидной пленки. Толщина ее достигает 5-20 нм, что чуть больше, чем на алюминии, но на титане она гораздо прочнее. Естественная пленка на титане преимущественно состоит из рутила и анатаза. Повысить толщину и плотность естественной оксидной пленки на титане можно путем анодирования (анодного оксидирования). После анодирования можно также добиться повышения микротвердости поверхности титана, износостойкости, жаростойкости, жаропрочности, усталостной прочности и стойкости к схватыванию. После анодирования повышаются антифрикционные свойства поверхности деталей, предотвращается контактная коррозия при соприкосновении титана с алюминием, магнием, кадмиевыми и цинковыми покрытиями. Также анодная плёнка, благодаря пористой структуре, хорошо зарекомендовала себя как подслой для нанесения лакокрасочных материалов, клеев, герметиков, смазок. Высокая коррозионная стойкость в физиологической среде анодированного титана позволяет использовать данный материал для производства имплантов и протезов.
#видеоуроки #physics #физика #опыты #электродинамика #анодирование #химия #эксперименты #научные_фильмы #электролиз

💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
☢️ Уран-238 в камере Вильсона 🫧

Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.

Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.

Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).

Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.

Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты

🖥 How Scientists Discovered Atoms? // Как ученые открыли атомы?

💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.

🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
💧 Эффект Ребиндера — облегчение диспергирования под влиянием адсорбции. Эффект открыт Петром Александровичем Ребиндером в 1928 году. Он представляет собой адсорбционное понижение прочности — изменение механических свойств твёрдых тел вследствие физико-химических процессов, вызывающих уменьшение поверхностной (межфазной) энергии тела, что может приводить к деформации. В случае кристаллического твёрдого тела, помимо уменьшения поверхностной энергии, для проявления эффекта Ребиндера важно также, чтобы кристалл имел дефекты в структуре, необходимые для зарождения трещин, которые затем под влиянием среды распространяются. У поликристаллических тел такими дефектами являются границы зёрен. Проявляется в снижении прочности и возникновении хрупкости, уменьшении долговечности, облегчении диспергирования. Для проявления эффекта Ребиндера необходимы следующие условия:
▪️ Контактирование твердого тела с жидкой средой
▪️ Наличие растягивающих напряжений
Основными характерными чертами, отличающими эффект Ребиндера от других явлений, например, коррозии и растворения, являются следующие:
▪️ быстрое появление — немедленно после контакта тела со средой
▪️достаточность мизерного объёма действующего на твёрдое тело вещества, но только с сопутствующим механическим воздействием
▪️возвращение тела к начальным характеристикам после удаления среды (в ряде случаев это не так, например, при самодиспергировании)

Примеры эффекта Ребиндера

▪️Проволока из монокристаллического цинка, на воздухе растягивающаяся в два раза, после окунания в раствор нитрата ртути при слабой попытке растянуть разламывается с образованием гладких поверхностей излома; пластина поликристаллического цинка, на воздухе складываемая пополам без трещин, после нанесения капли ртути или галлия и слабой попытке согнуть в этом месте, трескается и ломается. Вообще проявление эффекта Ребиндера при контакте твёрдого металла или сплава с жидким металлом довольно распространено, подверженные ему пары металл (сплав)—расплав металла включают также следующие: цинк—олово, сталь—индий, сталь—кадмий, алюминий—галлий. Это важно учитывать, например, при сварке и пайке.

▪️В ионных кристаллах эффект Ребиндера проявляется при контакте с определёнными полярными веществами: пластичные при температуре 400 °C монокристаллы хлорида натрия при наличии расплава хлорида цинка или расплава хлорида алюминия и растяжении становятся хрупкими; поликристаллы хлорида калия теряют прочность при изгибе и растяжении в воде, насыщенной хлоридом же калия. Эффект Ребиндера в ионных кристаллах может применяться для улучшения бурения горных пород. Силикатное стекло теряет прочность на излом в присутствии воды.

▪️Для молекулярных кристаллов проявление эффекта Ребиндера возможно при контакте с определёнными неполярными веществами. Так, поликристаллы нафталина теряют до половины своей прочности и больше в присутствии бензола, дихлорметана.
#физика #адсорбция #physics #science #химия #видеоуроки #наука #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
#️⃣ Голографическая технология от компании Voxon Photonics

Австралийская компания Voxon Photonics тоже представила своего рода дисплей VX1 для отображения объемных изображений, но в отличие от прототипа из Англии, его можно купить за 10 000 долларов. Изображения он создает не между пластин, а сверху, как на столе, позволяя рассматривать получающуюся картинку с любого ракурса, естественно, без каких-либо 3D-очков. Проект является продолжением разработки Voxiebox, показанной два года назад, и не служит простым демонстрационным образцом. Программисты компании создали для него целый пакет софта для 3D-сканеров, вывода моделей из под 3D Max и других подобных программ, а так же для управления готовыми загруженными моделями с возможностью прокрутки, масштабирования, позиционирования и других действий для полноценной демонстрации под любыми углами. Причем интерфейс управления уже упрощен до максимума – у VX1 есть не только джойстик для «вращения» и масштабирования картинки, но и дисплей управления для выбора типа представления объектов: монохромное, RGB, с разделением на слои и т.д.

Сходство с голограммным дисплеем из Звездных Войн было бы почти полным, если бы не одно но: светящаяся картинка не зря закрыта сверху стеклянным колпаком – без него магия разрушается, потому что картинка формируется не в воздухе, а в толще стекла. Ее формирует проектор, работающий с гранями, как с экранами обратной проекции. Он выводит изображение послойно, но так быстро, что структура изображения кажется стабильной. У Voxiebox вся электроника была значительно менее мощной и проектор проще, поэтому принцип работы виден даже на ролике из YouTube. Впрочем, кое в чем разработка Voxon Photonics даже круче дисплея из Звездных Войн. По утверждению Гэвина Смита, соучредителя компании, при наличии интереса со стороны потенциальных заказчиков установку можно легко увеличить в несколько раз, получив таким образом изображение, измеряемое уже десятками сантиметров. А пока что у VX1 оно имеет размеры 18х18х8 см, и хорошо видно оно лишь в полутьме.

Голограмма — это объёмная оптическая копия реального объекта, основанная на интерференции лучей света — от источника и от предмета. В отличие от фотографии, голограмма трёхмерна, так как фиксирует объём объекта и изменение перспективы при взгляде с разных углов. Для создания голограммы необходимо сначала осветить лазерным лучом фотографируемый объект. Затем второй лазерный луч добавляется к свету, отражённому от объекта, чтобы создать интерференционные полосы, которые затем могут быть записаны на плёнку. #физика #оптика #physics #science #лазер #технологии #наука #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Безопорное движение? Или очередная ловушка? 🧐

Исходя из законов Ньютона, для того, чтобы тело начало перемещаться необходимо его взаимодействие с другими телами. В противном случае, оно не сможет двигаться. Даже если представить себе хомяка, внутри шара или какое-либо устройство, способное двигаться из-за перемещений внутри устройства, то процесс движения не будет безопорным. Он всё равно будет иметь точки взаимодействия с окружающими телами. По настоящему безопорным являлось бы движение летающей тарелки. Ведь она просто летит, а никаких следов реактивного движения нет.

Безопорное движение приравнивается в умах ученых с вечным двигателем и обозначается, как невозможное явление. Что вечный двигатель будет рассеивать энергию и никогда не станет по-настоящему вечным, что безопорно движущееся тело будет или не перемещаться, или так или иначе взаимодействовать с пространством и другими телами. Однако, несмотря на очевидные ограничения и противоречие модели движения существующим законам физики, огромное количество энтузиастов в той или иной мере пыталось эти законы физики нарушить. Существует множество попыток для получения патентов на устройства, способные использовать безопорное движение.

Наиболее яркий представитель вида безопорных двигателей — это инерцоид. Общая схема этого типа устройств представляет собой некоторое устройство, внутри которого перемещаются закрепленные грузы. Грузы раскачиваются и создают момент инерции. В 1930 была создана даже тележка Толчина. Толчин разработал инерционный двигатель подобного типа и пытался продемонстрировать безопорное движение. Впоследствии возможность безопорного движения такой штуки было опровергнуто и доказано взаимодействие с окружающей средой через силу трения.

Следующая попытка сделать безопорный двигатель — это устройство EmDrive. По заявлениям разработчиков устройство создаёт тягу за счёт стоячих электромагнитных волн в замкнутом резонаторе. Резонатор выполнен в виде усеченного конуса. Когда в нем появляется волна, обнаруживается микротяга. Большинство ученых опровергает возможность работы EmDrive. Тяга без отталкивания от чего-либо или без выброса назад чего-либо, формально противоречит закону сохранения импульса. Но тяга действительно зарегистрирована! Правда даже сторонники EmDrive не могут объяснить, как это работает. Возможно, впоследствии появится некоторое объяснение, которое вновь укажет, что опора всё же есть. #физика #механика #physics #science #кинематика #динамика #наука #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
💥 Лазерная сварка с разной формой луча

Лазерная сварка металла — это удобный и эффективный инструмент, который используется в различных сферах, от строительной до промышленной.
Увеличить эффективность лазерной сварки помогает функция выбора формы луча. Сейчас на рынке предоставлены модели лазерных голов, позволяющие оператору выбирать из 6-8 различных форм. Каждая из них оптимально подходит под определенные задачи — сварка труб, создание широкого и прочного шва, проникающая сварка.

Лазерная сварка — сварка с использованием лазера в качестве энергетического источника. Лазерная сварка применяется для сварки радиоэлектронике и электронной технике, она позволяет материалы с толщинами от нескольких микрометров до десятков миллиметров. Сущность лазерного процесса сварки состоит в следующем: лазерное излучение направляется в фокусирующую систему, где фокусируется в пучок меньшего сечения и попадает на свариваемые детали, где частично отражается, частично проникает внутрь материала, где поглощается, нагревает и расплавляет металл, формируя сварной шов.

💎 Лазерная сварка появилась после изобретения Н. Г. Басовым, А. М. Прохоровым, Х. Таунсом в 60-е годы XX века лазеров, созданием мощных лазерных установок непрерывного и импульсного действия. К 2019 г. разработан метод сварки стекла с металлом, при помощи пикосекундного лазера. #физика #механика #physics #science #сварка #пайка #наука #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Насос без подвижных частей может перекачивать жидкость, но как? ⚡️

Электромагнитный насос [ магнитогидродинамический насос] — насос, предназначенный для перекачки расплавленных металлов, растворов солей и других электропроводящих жидкостей. Принцип действия электромагнитного насоса следующий. Внешнее магнитное поле устанавливается под прямым углом к нужному направлению движения жидкого вещества, через вещество пропускается ток. Вызванная таким образом сила Ампера перемещает жидкость.

Электромагнитные насосы используются для перемещения расплавленного припоя во многих машинах для пайки волной, для перекачки жидкометаллического теплоносителя в ядерных реакторах (например в реакторе БН-800, а также на ЯЭУ "Бук" и "Топаз") и в магнитогидродинамическом приводе.

Эйнштейном и Силардом была разработана модель холодильника, в котором электромагнитный насос приводил в движение расплавленный металл, который сжимал рабочий газ, пентан. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
💫 Датой открытия электрона считается 1897 год, когда Томсоном был поставлен эксперимент по изучению катодных лучей. Первые снимки треков отдельных электронов были получены Чарльзом Вильсоном при помощи созданной им камеры Вильсона. В 1749 году Бенджамин Франклин высказал гипотезу, что электричество представляет собой своеобразную материальную субстанцию. Центральную роль электрической материи он отводил представлению об атомистическом строении электрического флюида. В работах Франклина впервые появляются термины: заряд, разряд, положительный заряд, отрицательный заряд, конденсатор, батарея, частицы электричества.
Иоганн Риттер в 1801 году высказал мысль о дискретной, зернистой структуре электричества. Вильгельм Вебер в своих работах с 1846 года вводит понятие атома электричества и гипотезу, что его движением вокруг материального ядра можно объяснить тепловыми и световыми явлениями. Майкл Фарадей ввел термин «ион» для носителей электричества в электролите и предположил, что ион обладает неизменным зарядом. Г. Гельмгольц в 1881 году показал, что концепция Фарадея должна быть согласована с уравнениями Максвелла. Джордж Стони в 1881 году впервые рассчитал заряд одновалентного иона при электролизе, а в 1891 году, в одной из теоретических работ Стоней предложил термин «электрон» для обозначения электрического заряда одновалентного иона при электролизе.

Катодные лучи открыты в 1859 году Юлиусом Плюккером, название дано Ойгеном Гольдштейном, который высказал волновую гипотезу: катодные лучи представляют собой процесс в эфире. Английский физик Уильям Крукс высказал идею, что катодные лучи это поток частичек вещества. В 1895 году французский физик Жан Перрен экспериментально доказал, что катодные лучи — это поток отрицательно заряженных частиц, которые движутся прямолинейно, но могут отклоняться магнитным полем. #физика #physics #математика #gif #опыты #видеоуроки #math #моделирование #анимация

💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
💧 Идеальный рез стекла с помощью физических свойств — Эффект Ребиндера

Самой яркой и наглядной демонстрацией эффекта является резка (фактически — откалывание) стекла обыкновенными ножницами в воде. Таким образом получится вырезать из стекла практически любую фигуру. В физикеэффект Ребиндера — это снижение твёрдости и пластичности материала, в частности металлов, под воздействием поверхностно-активной плёнки. Эффект назван в честь советского учёного Петра Александровича Ребиндера, который впервые описал этот эффект в 1928 году. Предлагаемое объяснение этого эффекта заключается в разрушении поверхностных оксидных плёнок и снижении поверхностной энергии с помощью поверхностно-активных веществ. Этот эффект особенно важен при механической обработке, поскольку смазочные материалы снижают силу резания.

Эффект Ребиндера

#физика #адсорбция #physics #science #химия #видеоуроки #наука #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
⚙️ Четырёхколёсное рулевое управление или система подруливания задних колес у автомобиля «4WS»

Это технология, используемая в автомобилях. Четырёхколесное рулевое управление в основном используется для создания более высокой маневренности для четырёхколесных транспортных средств и может иметь механическoe, электрическoe и гидравлическoe управлении. В основном это видно на тракторах и экскаваторах.

При высокой скорости задние колеса поворачиваются в сторону поворота (так же как и передние колеса), что позволяет увеличить стабильность при резких манёврах (например обгоне). При низкой скорости задние колеса поворачивают в противоположную от поворота сторону (обратно передним колесам), что позволяет увеличить маневренность и уменьшить радиус разворота.

На автомобилях рулевое управление состоит из механического редуктора и системы тяг, преобразующих поворот руля в поворот управляемых (передних) колёс. Отношение углов поворота руля и колёс известно как «Передаточное отношение рулевого управления» и обычно составляет 15:1 … 25:1. Колесо, находящееся с той стороны, куда происходит поворот, поворачивается на больший угол, так, чтобы точка пересечения осей передних колёс находилась на оси задних колёс (в этом случае все колёса вращаются вокруг одной точки и не происходит бокового скольжения шин). Система тяг, обеспечивающая поворот колёс на разный угол, называется рулевая трапеция. #техника #видеоуроки #опыты #эксперименты #механика #авто #конструкторы

💡 Physics.Math.Code // @physics_lib
⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле. Обратите внимание, что металлическая стружка намагничивается и подобна маленьким стрелочкам компаса располагается вдоль линий индукции магнитного поля. Разумеется в центре кольцевого витка поле перпендикулярно плоскости витка, что мы наблюдаем на видео. Как только ток отключают, то поле исчезает, что видно по осыпающейся металлической стружке, которая является косвенным детектором поля, а следовательно и большого тока. На картинке показан расчет для поля одного витка. А на видео точно N > 10 витков. Вот и получается, что суммарное магнитное поле ~ 0.01-0.02 [Тл]

Величина тока в сварочных проводах может достигать:
▪️ Для бытовых аппаратов — сила тока от 100 до 250 А
▪️ Для полупрофессиональных агрегатов — до 330 А
▪️ Для профессиональных аппаратов — до 500 А.
▪️ Для промышленных установок повышенной мощности — до 680 А.

В начале 19 века, когда Ампер провел серию своих знаменитых экспериментов, электричество и магнетизм по отдельности были достаточно хорошо описаны. Но почти никому в голову не приходило, что эти явления могут быть связаны. Магнетизм впервые упоминается еще в VIII веке до н. э. древними греками, когда был обнаружен магнетит — руда, способная притягивать металлы. Ее природа оставалась неизвестной, однако это не помешало китайским и европейским мореплавателям использовать магнетиты в компасах.

▫️В 1827 году вышла главная для всей жизни ученого книга: «Мемуары о математической теории электродинамических явлений, однозначно выведенных из опыта», в которой Ампер подвел итоги всех своих исследований и впервые употребил термин «Электродинамика».
▫️В 1820 году, параллельно с работой самого Ампера, его коллеги Жан-Батист Био (выдающийся ученый, член Академии наук) и Феликс Савар получили экспериментальные данные. На их основе Лаплас вывел формулу для нахождения вектора индукции магнитного поля. Закон получил название Био-Савара-Лапласа и стал чем-то базовым вроде закона Кулона в электростатике.
▫️В 1831 году Майкл Фарадей открыл явление электромагнитной индукции, когда вращающийся вокруг катушки с проводником магнит приводил к появлению ЭДС в ней. По сути, появился первый электрогенератор. #магнитизм #опыты #физика #магнитное_поле #сварка #physics #ток #индукция #оптика #видеоуроки

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⛓️ Тенсегрити (от англ. tensional integrity — «соединение путём натяжения») — принцип построения конструкций из стержней и тросов, в которых стержни работают на сжатие, а тросы — на растяжение.

В основе тенсегрити лежит идея о том, что структура может быть стабильной и прочной, несмотря на то, что её элементы не соприкасаются друг с другом. Вместо этого они соединены таким образом, что каждый элемент работает на растяжение или сжатие, создавая напряжение и поддерживая всю конструкцию. Это позволяет создавать лёгкие и прочные конструкции, которые могут адаптироваться к изменениям окружающей среды. Понятие тенсегрити используется также при объяснении процессов в биологических исследованиях (особенно в биологии клетки) и некоторых других современных отраслях знания, например, в исследованиях строения текстильных тканей, дизайне, исследованиях социальных структур, ансамблевой музыке и геодезии.

Тенсегрити или плавающее сжатие — это конструктивный принцип, основанный на системе изолированных компонентов, находящихся под сжатием внутри сети непрерывного натяжения и расположенных таким образом, что сжатые элементы (обычно стержни или распорки) не касаются друг друга, в то время как предварительно напряжённые элементы (обычно тросы или сухожилия) разграничивают систему в пространстве.

Тенсегрити-структуры встречаются как в природе, так и в созданных человеком объектах: в человеческом теле кости находятся в состоянии сжатия, а соединительные ткани — в состоянии натяжения, и те же принципы применяются в мебели, архитектурном дизайне и не только.
#механика #динамика #физика #статика #технологии #physics #стереометрия #теоретическая_механика #сопромат #видеоуроки #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
Звёздообразный или радиальный двигатель — поршневой двигатель внутреннего сгорания, цилиндры которого расположены радиальными лучами вокруг одного коленчатого вала через равные углы. Звездообразный двигатель имеет небольшую длину и позволяет компактно размещать большое количество цилиндров. Нашёл широкое применение в авиации.

Главное отличие звездообразного двигателя от поршневых двигателей других типов заключается в конструкции кривошипно-шатунного механизма. Один шатун является главным (он похож на шатун обычного двигателя с рядным расположением цилиндров), остальные являются прицепными и крепятся к главному шатуну по его периферии (такой же принцип применяется в некоторых V-образных двигателях). Эксплуатационным недостатком любого звездообразного двигателя является возможность протекания масла в нижние цилиндры во время стоянки, в связи с чем требуется перед запуском двигателя убедиться в отсутствии масла в нижних цилиндрах. Запуск двигателя при наличии масла в нижних цилиндрах приводит к гидроудару и поломке кривошипно-шатунного механизма. Этот недостаток неустраним, поскольку он является конструкционным. В зависимости от размеров и мощности двигателя, звездообразные двигатели могут за счёт удлинения коленчатого вала образовывать несколько звёзд-отсеков. Четырёхтактные звездообразные моторы обычно имеют нечётное число цилиндров в отсеке — это позволяет давать искру в цилиндрах «через один». Возможна работа и с чётным количеством цилиндров (чаще всего — при расположении цилиндров в несколько рядов).

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
✈️ Как сделать модель самолёта с небольшим двигателем

Мечта человечества о полёте, возможно, впервые была реализована в Китае, где полёт человека, привязанного (в виде наказания) к бумажным змеям, был описан в VI веке н. э. Позднее первый управляемый полёт на дельтаплане совершил Аббас ибн Фарнас в Аль-Андалусе в IX веке н. э. У Леонардо да Винчи (XV в.) мечта о полёте нашла выражение в нескольких проектах, но он не пытался их реализовывать. Первые серьёзные попытки полёта человека были реализованы в Европе в конце XVIII века.

Братья Уилбер и О́рвилл Райт — американцы, за которыми в большинстве стран мира признаётся приоритет конструирования и постройки первого в мире самолёта, способного к полёту, а также совершение первого управляемого полёта человека на аппарате тяжелее воздуха с двигателем. Возможно братья не стали первыми, кто совершил полёт на экспериментальном самолёте, но они первыми смогли управлять полётом самолёта. Их работы прямо повлияли на все последующие попытки создания самолёта в мире, авиастроение всех ведущих стран.

Фундаментальное достижение братьев Райт — практичные системы управления и устойчивости по трём осям вращения самолёта, чтобы эффективно управлять самолётом и поддерживать его равновесие во время полёта. Их подход стал основой для конструирования и постройки самолётов. Братья Райт сосредоточились на изучении вопросов управления летящим аппаратом, вместо того, чтобы находить возможность устанавливать более мощные двигатели, как это делали другие экспериментаторы. Их эксперименты в аэродинамической трубе оказались плодотворнее, чем эксперименты других пионеров авиации, для создания эффективного крыла и пропеллеров. Технические знания братья Райт приобрели, многие годы работая в своём магазине, где продавали печатные прессы, велосипеды, двигатели и другие механизмы. #физика #physics #механика #аэродинамика #опыты #самоделки #техника #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🟢 2 металлических шара способны прожечь бумагу?

При столкновении двух металлических шаров, движущихся друг на друга, в точке удара может прожечься бумага.
Это происходит из-за того, что в момент столкновения шары кратковременно деформируются и отскакивают друг от друга. Если скорость шаров достаточная, то при деформации выделяется тепло. Кроме того, поскольку столкновение шаров происходит в точке, то «концентрация» тепла получается большой.

Вопрос для наших физиков: как оценить скорость шариков в момент удара?

📝 Некоторые расчеты и идеи

#физика #physics #механика #кинематика #опыты #термодинамика #техника #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Сферический магнит парит в воздухе на расстоянии 1.5 см от поверхности бруска дерева, внутри которого скрывается магнитная система. Этот вид левитации использует систему с регулируемыми электромагнитными катушками. Контур обратной связи имеет датчик, работающий на основе эффекта Холла. Всё это позволяет точно настраивать магнитное поле и сбалансировать силу тяжести шарика даже когда основание находится в вертикальном положении.

⚡️ Опыты Фарадея 🧲

🔥 Индукционный нагрев

💫 «Гроб Мухаммеда»

🧲 Как работают трансформаторы?

⚡️ Основные физические понятия электродинамики (Леннаучфильм)

Взаимодействие зарядов. Электростатическая индукция

💫 Исследование электрических полей. Опыт по физике

⚡️ Уравнения Максвелла

⚙️ Электромагнитная подвеска 🧲

#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM