This media is not supported in your browser
VIEW IN TELEGRAM
⭕️ Экстремальная задача на смекалку. С одной стороны можно решить методами математического анализа, с другой стороны — логикой, подкрепленной школьной геометрией.
#математика #mathematics #animation #math #геометрия #geometry #gif #maths #видеоуроки #научные_фильмы #математический_анализ
💡 Physics.Math.Code // @physics_lib
#математика #mathematics #animation #math #геометрия #geometry #gif #maths #видеоуроки #научные_фильмы #математический_анализ
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🌕 Цвет звезды в зависимости от её температуры 🪐
Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
➰ Красота параметрических кривых
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🔴Доска Гальтона (также распространены названия квинкункс, quincunx и bean machine) — устройство, изобретённое английским учёным Фрэнсисом Гальтоном (первый экземпляр изготовлен в 1873 году, затем устройство было описано Гальтоном в книге Natural inheritance, изданной в 1889 году) и предназначающееся для демонстрации центральной предельной теоремы. Если нарисовать на задней стенке треугольник Паскаля, то можно увидеть, сколькими путями можно добраться до каждого из штырьков (чем ближе штырёк к центру, тем больше число путей).
3000 стальных шариков падают через 12 уровней ветвящихся путей и всегда в конечном итоге соответствуют распределению кривой нормального распределения. Каждый шар имеет шанс 50/50 следовать за каждой ветвью, так что шары распределяются внизу по математическому биномиальному распределению. #gif #геометрия #статистика #математика #теория_вероятностей #maths
💡 Physics.Math.Code // @physics_lib
3000 стальных шариков падают через 12 уровней ветвящихся путей и всегда в конечном итоге соответствуют распределению кривой нормального распределения. Каждый шар имеет шанс 50/50 следовать за каждой ветвью, так что шары распределяются внизу по математическому биномиальному распределению. #gif #геометрия #статистика #математика #теория_вероятностей #maths
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🔺 Так выглядит фрактал
Сложно перечислить все сферы деятельности, в которых применяются фракталы. Их кажущаяся сложность обманчива: все фракталы состоят из простейших фигур. В разных масштабах каждый элемент фрактала подобен друг другу. Одними из первых с фракталами столкнулись картографы, пытавшиеся точно воспроизвести линию морских побережий и убедившиеся в том, что для этого нужны бесконечные измерения.
#gif #геометрия #математика #симметрия #geometry #maths #фракталы
Пытались ли вы запрограммировать отрисовку какого-нибудь фрактала? Напишите в комментариях, а лучше покажите что у вас получилось.
💡 Physics.Math.Code // @physics_lib
Сложно перечислить все сферы деятельности, в которых применяются фракталы. Их кажущаяся сложность обманчива: все фракталы состоят из простейших фигур. В разных масштабах каждый элемент фрактала подобен друг другу. Одними из первых с фракталами столкнулись картографы, пытавшиеся точно воспроизвести линию морских побережий и убедившиеся в том, что для этого нужны бесконечные измерения.
#gif #геометрия #математика #симметрия #geometry #maths #фракталы
Пытались ли вы запрограммировать отрисовку какого-нибудь фрактала? Напишите в комментариях, а лучше покажите что у вас получилось.
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование
Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]
Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.
В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]
Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.
В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
💨 Стеклянный паровой двигатель выглядит особенно эстетично. Но безопасно ли?
Чешский стеклодув собрал действующую модель парового двигателя Стефенсона из стекла.
Немного фактов об изобретателе Стефенсоне:
▫️ 1. Построенный в 1825 году паровоз Стефенсона «Локомоушн № 1» уцелел до настоящего времени. Он использовался по назначению до 1857 года, а сейчас экспонируется в Дарлингтонском железнодорожном музее.
▫️ 2. В 1979 году, в честь 150-летия создания паровоза «Ракета», в Англии была построена его действующая копия. Она немного отличается от оригинала укороченной дымовой трубой. Это вызвано тем, что за прошедшие полтора столетия высота насыпи в Рэйнхилле (англ. Rainhill) заметно увеличилась, оставив меньший просвет под мостом.
▫️ 3. Портрет Джорджа Стефенсона был помещён на банкнотах серии Е Государственного банка Великобритании достоинством £5. В обращении эти купюры находились с 7 июня 1990 года по 21 ноября 2003 года.
🔥Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу, таким образом к паровым машинам можно было бы отнести и паровую турбину, имеющую до сих пор широкое применение во многих областях техники.
Первый паровой двигатель был создан и использован Фердинандом Вербистом в 1672 году в его изобретении — игрушкой на паровом двигателе, сделанной для китайского императора. Вторая паровая машина была построена в XVII веке французским физиком Дени Папеном и представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей. Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году. #gif #двс #механика #термодинамика #физика #physics #теплота
💡 Physics.Math.Code // @physics_lib
Чешский стеклодув собрал действующую модель парового двигателя Стефенсона из стекла.
Немного фактов об изобретателе Стефенсоне:
▫️ 1. Построенный в 1825 году паровоз Стефенсона «Локомоушн № 1» уцелел до настоящего времени. Он использовался по назначению до 1857 года, а сейчас экспонируется в Дарлингтонском железнодорожном музее.
▫️ 2. В 1979 году, в честь 150-летия создания паровоза «Ракета», в Англии была построена его действующая копия. Она немного отличается от оригинала укороченной дымовой трубой. Это вызвано тем, что за прошедшие полтора столетия высота насыпи в Рэйнхилле (англ. Rainhill) заметно увеличилась, оставив меньший просвет под мостом.
▫️ 3. Портрет Джорджа Стефенсона был помещён на банкнотах серии Е Государственного банка Великобритании достоинством £5. В обращении эти купюры находились с 7 июня 1990 года по 21 ноября 2003 года.
🔥Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу, таким образом к паровым машинам можно было бы отнести и паровую турбину, имеющую до сих пор широкое применение во многих областях техники.
Первый паровой двигатель был создан и использован Фердинандом Вербистом в 1672 году в его изобретении — игрушкой на паровом двигателе, сделанной для китайского императора. Вторая паровая машина была построена в XVII веке французским физиком Дени Папеном и представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей. Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году. #gif #двс #механика #термодинамика #физика #physics #теплота
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
В 2024 году Международная команда исследователей сообщила об открытии белка цитратсинтазы в цианобактерии Synechococcus elongatus, который самоорганизуется в треугольник Серпинского, это первый известный молекулярный фрактал.
Середины сторон равностороннего треугольника T₀ соединяются отрезками. Получаются 4 новых треугольника. Из исходного треугольника удаляется внутренность срединного треугольника. Получается множество T₁ , состоящее из 3 оставшихся треугольников «первого ранга». Поступая точно так же с каждым из треугольников первого ранга, получим множество T₂, состоящее из 9 равносторонних треугольников второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность T₀ ⊃ T₁ ⊃ T₂ ⊃... ⊃Tₙ .
Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные — в белый, то образуется треугольник Серпинского. #gif #геометрия #математика #симметрия #geometry #maths #фракталы
Пытались ли вы запрограммировать отрисовку какого-нибудь фрактала? Напишите в комментариях, а лучше покажите что у вас получилось.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🌕 Цвет звезды в зависимости от её температуры 🪐
Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🟡 Демонстрация того, как кривые на первый взгляд фигуры оказываются построены исключительно из прямых линий. Здесь речь идет о гиперболоиде вращения. В геометрии гиперболоид вращения, иногда называемый круговым гиперболоидом, представляет собой поверхность, образованную вращением гиперболы вокруг одной из ее главных осей. Гиперболоидные конструкции — сооружения в форме однополостного гиперболоида или гиперболического параболоида. Такие конструкции, несмотря на свою кривизну, строятся из прямых балок. Однополостный гиперболоид и гиперболический параболоид — дважды линейчатые поверхности, то есть через любую точку такой поверхности можно провести две пересекающиеся прямые, которые будут целиком принадлежать поверхности. Вдоль этих прямых и устанавливаются балки, образующие характерную решётку. Такая конструкция является жёсткой: если балки соединить шарнирно, гиперболоидная конструкция всё равно будет сохранять свою форму под действием внешних сил. Для высоких сооружений основную опасность несёт ветровая нагрузка, а у решётчатой конструкции она невелика. Эти особенности делают гиперболоидные конструкции прочными, несмотря на невысокую материалоёмкость. #gif #геометрия #физика #математика #math #geometry #алгебра #maths
💡 Physics.Math.Code // @physics_lib
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🗜Британский изобретатель Джозеф Брама в конце XVIII века изобрёл винтовой водопроводный кран (вентиль). В 1778 году он получил патент на ватерклозет с поплавковым клапаном, а спустя пять лет запустил производство вентиля, который с небольшими изменениями дошёл до нашего времени.
Также односторонний водяной клапан без движущихся частей в 1920 году запатентовал Никола Тесла. Благодаря сложной внутренней геометрии трубы, жидкость течёт по ней свободно в одном направлении и гораздо медленнее — в обратном.
Ещё одним изобретателем вентилей считается Нахум Вентиль, который в середине XIX века запатентовал вентиль-клапан в трубопроводах и аппаратах для запора потока жидкости, пара, газа.
#техника #наука #физика #изобретения #gif #эксперименты #maths #science
💡 Physics.Math.Code // @physics_lib
Также односторонний водяной клапан без движущихся частей в 1920 году запатентовал Никола Тесла. Благодаря сложной внутренней геометрии трубы, жидкость течёт по ней свободно в одном направлении и гораздо медленнее — в обратном.
Ещё одним изобретателем вентилей считается Нахум Вентиль, который в середине XIX века запатентовал вентиль-клапан в трубопроводах и аппаратах для запора потока жидкости, пара, газа.
#техника #наука #физика #изобретения #gif #эксперименты #maths #science
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу, таким образом к паровым машинам можно было бы отнести и паровую турбину, имеющую до сих пор широкое применение во многих областях техники.
Первый паровой двигатель был создан и использован Фердинандом Вербистом в 1672 году в его изобретении - игрушкой на паровом двигателе, сделанной для китайского императора. Вторая паровая машина была построена в XVII веке французским физиком Дени Папеном и представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей.
Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя (применение на рабочем ходу пара высокого давления вместо вакуума) было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году.
В России первая действующая паровая машина была построена в 1766 году по проекту Ивана Ползунова, предложенному им в 1763 году. Машина Ползунова имела два цилиндра с поршнями, работала непрерывно, и все действия в ней проходили автоматически. Но увидеть своё изобретение в работе И. И. Ползунову не пришлось: он умер 27 мая 1766 года, а его машина пущена в эксплуатацию на Барнаульском заводе только летом. Через пару месяцев из-за поломки она перестала действовать и впоследствии была демонтирована. #опыты #научные_фильмы #физика #термодинамика #мкт #видеоуроки #gif #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Для понимания процесса нужно записать на черновике два параметрических уравнения, которые получаются, когда кругл «катится» по плоскости:
x = r⋅t - h⋅sin(t)
y = r - h⋅cos(t)
Для эпициклоиды уже сложнее:
x = R⋅(m+1)⋅cos(m⋅t) - h⋅cos((m+1)⋅t)
y = R⋅(m+1)⋅sin(m⋅t) - h⋅sin((m+1)⋅t)
где
m = r/R
, R
— радиус неподвижной окружности (опорная поверхность), r
— радиус катящейся окружности. h
— расстояние от центра катящейся окружности до точки маркера (за которой мы следим, точка, которая рисует).Ну а если тут положить
R → ∞
и h → R
, то мы получаем уравнения классической циклоиды, график которой описывает крайняя точка на колесе машины, которая едет с постоянной скоростью и без проскальзывания.❓Математические вопросы для наших подписчиков:
▪️ Попробуйте выразить явную зависимость y(x). Получится у вас это сделать?
▪️ На видео видно, что мы получаем семейство кривых, которые после каждого полного «круга» немного смещаются. Для этого смещения обязательно ли число зубьев на маленьком колесе и число зубьев на опорной кривой должны быть взаимно простыми числами? Или достаточно лишь того, чтобы они отличались хотя бы на 1 ?
➰ Красота параметрических кривых
⭕️ Точки пересечения кругов на воде движутся по гиперболе
🕑 Экстремальная задача на смекалку
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
➰ Сумма колебаний одинаковой амплитуды, но с отношением фаз, которое равно золотому сечению φ. В результате получается такая картинка
#физика #physics #математика #gif #опыты #видеоуроки #math #научные_фильмы #колебания
💡 Physics.Math.Code // @physics_lib
#физика #physics #математика #gif #опыты #видеоуроки #math #научные_фильмы #колебания
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🔍 Для чего нужна физика? С помощью физики и знаний оптики вы можете разработать систему естественного освещения.
Солнечный свет по-прежнему остается наиболее предпочтительным вариантом освещения. Система освещения, разработанная инженерами, дает возможность организовать доступ солнечного света, падающего на крышу дома, во внутренние помещения здания. Система представляет собой установленное на кровле светоприемное устройство, соединенное с трубчатым световодом, который проходит через подкрышное пространство и служит для передачи света внутрь помещения. Купол светоприемника изготовлен из прочного акрилового полимера, обладающего повышенной устойчивостью к внешним воздействиям. Устройство сбора и передачи света направляет вниз по световому каналу даже лучи, не попадающие в него напрямую. Таким образом, светоприемник обеспечивает яркое освещение помещений и в облачные зимние дни, в утренние и вечерние часы, когда солнце находится низко над горизонтом.
Солнечный свет, «захваченный» куполом, с помощью системы линз передается вниз по световому каналу и, многократно отражаясь, попадает в помещение через трубчатый световод, который позволяет передавать 99,7 % света, падающего на купол, на расстояние от 6 до 20 м. Для облегчения монтажа система комплектуется угловыми адаптерами, которые позволяют обходить балки кровельных систем и другие элементы чердачных конструкций, что дает возможность размещать практически в любом месте.
Система передает без искажений весь видимый диапазон частот солнечного излучения, но при этом отсекает невидимые части спектра (инфракрасные и УФ-лучи). Это позволяет избежать перегрева помещения в жаркое время года и, таким образом, снизить расходы на кондиционирование, а также исключает выцветание обоев и предметов интерьера. Конструкция светового канала полностью исключает потери тепла в зимний период, что позволяет уменьшить энергетические расходы на отопление помещений. #физика #оптика #наука #physics #science #изобретения #технологии #gif
💡 Physics.Math.Code // @physics_lib
Солнечный свет по-прежнему остается наиболее предпочтительным вариантом освещения. Система освещения, разработанная инженерами, дает возможность организовать доступ солнечного света, падающего на крышу дома, во внутренние помещения здания. Система представляет собой установленное на кровле светоприемное устройство, соединенное с трубчатым световодом, который проходит через подкрышное пространство и служит для передачи света внутрь помещения. Купол светоприемника изготовлен из прочного акрилового полимера, обладающего повышенной устойчивостью к внешним воздействиям. Устройство сбора и передачи света направляет вниз по световому каналу даже лучи, не попадающие в него напрямую. Таким образом, светоприемник обеспечивает яркое освещение помещений и в облачные зимние дни, в утренние и вечерние часы, когда солнце находится низко над горизонтом.
Солнечный свет, «захваченный» куполом, с помощью системы линз передается вниз по световому каналу и, многократно отражаясь, попадает в помещение через трубчатый световод, который позволяет передавать 99,7 % света, падающего на купол, на расстояние от 6 до 20 м. Для облегчения монтажа система комплектуется угловыми адаптерами, которые позволяют обходить балки кровельных систем и другие элементы чердачных конструкций, что дает возможность размещать практически в любом месте.
Система передает без искажений весь видимый диапазон частот солнечного излучения, но при этом отсекает невидимые части спектра (инфракрасные и УФ-лучи). Это позволяет избежать перегрева помещения в жаркое время года и, таким образом, снизить расходы на кондиционирование, а также исключает выцветание обоев и предметов интерьера. Конструкция светового канала полностью исключает потери тепла в зимний период, что позволяет уменьшить энергетические расходы на отопление помещений. #физика #оптика #наука #physics #science #изобретения #технологии #gif
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
Давайте обсудим:
1. Будет ли в реальности работать данная модель под нагрузкой ?
2. Если будет работать, то в какой области можно применить данный механизм?
#геометрия #моделирование #механика #gif #physics #передачи #кинематика #наука #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⭕️ Сохранение радиального движения объекта в момент отрыва от вращающей платформы ➰
Движение по радиальной траектории продолжается до тех пор, пока пружинка имеет центростремительную силу (натяжения, упругости). К сожалению, gif-анимация заканчивается как раз в тот момент, когда натяжение по направлению к центру пропадает. Но, основываясь на базовые законы классической механики, мы можем предугадать дальнейшее движение пружины.
❓ Вопрос для наших подписчиков: Какое будет дальнейшее движение пружинки после того, как заканчивается данная анимация? Опишите динамику развития процесса движения.
#задачи #механика #кинематика #упругость #physics #физика #наука #science #gif #анимация
💡 Physics.Math.Code // @physics_lib
Движение по радиальной траектории продолжается до тех пор, пока пружинка имеет центростремительную силу (натяжения, упругости). К сожалению, gif-анимация заканчивается как раз в тот момент, когда натяжение по направлению к центру пропадает. Но, основываясь на базовые законы классической механики, мы можем предугадать дальнейшее движение пружины.
#задачи #механика #кинематика #упругость #physics #физика #наука #science #gif #анимация
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
💦 Моделирование жидкости (англ. fluid simulation) — область компьютерной графики, использующая средства вычислительной гидродинамики для реалистичного моделирования, анимации и визуализации жидкостей, газов, взрывов и других связанных с этим явлений. Имея на входе некую жидкость и геометрию сцены, симулятор жидкости моделирует её поведение и движение во времени, принимая в расчёт множество физических сил, объектов и взаимодействий. Моделирование жидкости широко используется в компьютерной графике и ранжируется по вычислительной сложности от высокоточных вычислений для кинофильмов и спецэффектов до простых аппроксимаций, работающих в режиме реального времени и использующихся преимущественно в компьютерных играх.
Существует несколько конкурирующих методов моделирования жидкости, каждый из которых имеет свои преимущества и недостатки. Наиболее распространёнными являются сеточные методы Эйлера, гидродинамика сглаженных частиц (англ. smoothed particle hydrodynamics — SPH), методы, основанные на завихрениях, и метод решёточных уравнений Больцмана. Эти методы возникли в среде вычислительной гидродинамики и были позаимствованы для практических задач в индустрии компьютерной графики и спецэффектов. Основное требование к данным методам со стороны компьютерной графики — визуальная правдоподобность. Иными словами, если наблюдатель при просмотре не может заметить неестественность анимации, то моделирование считается удовлетворительным. В физике, технике и математике, с другой стороны, основные требования предъявляются к физической корректности и точности моделирования, а не к её визуальному результату.
В компьютерной графике самые ранние попытки решить уравнения Навье — Стокса в трёхмерном пространстве были предприняты в 1996 году Ником Фостером (англ. Nick Foster) и Димитрисом Метаксасом (англ. Dimitris Metaxas). Их работа в качестве основы использовала более раннюю работу по вычислительной гидродинамике, которая была опубликована в 1965 году Харлоу (англ. Harlow) и Уэлшем (англ. Welch). До работы Фостера и Метаксаса многие методы моделирования жидкости были построены на основе специальных систем частиц, методах снижения размерности (типа двухмерные модели мелких водяных объёмов типа луж) и полу-случайных шумовых турбулентных полях. В 1999 году на SIGGRAPH Джос Стэм (англ. Jos Stam) опубликовал метод так называемых «стабильных жидкостей» (англ. Stable Fluids), который использовал полу-лагранжевый метод адвекции и неявные интеграции вязкости для обеспечения безусловно устойчивого поведения жидкости. Это позволило моделировать жидкости со значительно большим временным шагом и в общем привело к более быстрым программам. Позже, в 2001—2002 годах, этот метод был расширен Роном Федкивым вместе со своими сотрудниками, благодаря чему стало возможным обрабатывать сложную модель воды в трёхмерной сцене с использованием метода установленного уровня (англ. Level set method). #математика #физика #наука #gif #образование #разработка_игр #gamedev #math #physics
💡 Physics.Math.Code // @physics_lib
Существует несколько конкурирующих методов моделирования жидкости, каждый из которых имеет свои преимущества и недостатки. Наиболее распространёнными являются сеточные методы Эйлера, гидродинамика сглаженных частиц (англ. smoothed particle hydrodynamics — SPH), методы, основанные на завихрениях, и метод решёточных уравнений Больцмана. Эти методы возникли в среде вычислительной гидродинамики и были позаимствованы для практических задач в индустрии компьютерной графики и спецэффектов. Основное требование к данным методам со стороны компьютерной графики — визуальная правдоподобность. Иными словами, если наблюдатель при просмотре не может заметить неестественность анимации, то моделирование считается удовлетворительным. В физике, технике и математике, с другой стороны, основные требования предъявляются к физической корректности и точности моделирования, а не к её визуальному результату.
В компьютерной графике самые ранние попытки решить уравнения Навье — Стокса в трёхмерном пространстве были предприняты в 1996 году Ником Фостером (англ. Nick Foster) и Димитрисом Метаксасом (англ. Dimitris Metaxas). Их работа в качестве основы использовала более раннюю работу по вычислительной гидродинамике, которая была опубликована в 1965 году Харлоу (англ. Harlow) и Уэлшем (англ. Welch). До работы Фостера и Метаксаса многие методы моделирования жидкости были построены на основе специальных систем частиц, методах снижения размерности (типа двухмерные модели мелких водяных объёмов типа луж) и полу-случайных шумовых турбулентных полях. В 1999 году на SIGGRAPH Джос Стэм (англ. Jos Stam) опубликовал метод так называемых «стабильных жидкостей» (англ. Stable Fluids), который использовал полу-лагранжевый метод адвекции и неявные интеграции вязкости для обеспечения безусловно устойчивого поведения жидкости. Это позволило моделировать жидкости со значительно большим временным шагом и в общем привело к более быстрым программам. Позже, в 2001—2002 годах, этот метод был расширен Роном Федкивым вместе со своими сотрудниками, благодаря чему стало возможным обрабатывать сложную модель воды в трёхмерной сцене с использованием метода установленного уровня (англ. Level set method). #математика #физика #наука #gif #образование #разработка_игр #gamedev #math #physics
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
💫 Датой открытия электрона считается 1897 год, когда Томсоном был поставлен эксперимент по изучению катодных лучей. Первые снимки треков отдельных электронов были получены Чарльзом Вильсоном при помощи созданной им камеры Вильсона. В 1749 году Бенджамин Франклин высказал гипотезу, что электричество представляет собой своеобразную материальную субстанцию. Центральную роль электрической материи он отводил представлению об атомистическом строении электрического флюида. В работах Франклина впервые появляются термины: заряд, разряд, положительный заряд, отрицательный заряд, конденсатор, батарея, частицы электричества.
Иоганн Риттер в 1801 году высказал мысль о дискретной, зернистой структуре электричества. Вильгельм Вебер в своих работах с 1846 года вводит понятие атома электричества и гипотезу, что его движением вокруг материального ядра можно объяснить тепловыми и световыми явлениями. Майкл Фарадей ввел термин «ион» для носителей электричества в электролите и предположил, что ион обладает неизменным зарядом. Г. Гельмгольц в 1881 году показал, что концепция Фарадея должна быть согласована с уравнениями Максвелла. Джордж Стони в 1881 году впервые рассчитал заряд одновалентного иона при электролизе, а в 1891 году, в одной из теоретических работ Стоней предложил термин «электрон» для обозначения электрического заряда одновалентного иона при электролизе.
Катодные лучи открыты в 1859 году Юлиусом Плюккером, название дано Ойгеном Гольдштейном, который высказал волновую гипотезу: катодные лучи представляют собой процесс в эфире. Английский физик Уильям Крукс высказал идею, что катодные лучи это поток частичек вещества. В 1895 году французский физик Жан Перрен экспериментально доказал, что катодные лучи — это поток отрицательно заряженных частиц, которые движутся прямолинейно, но могут отклоняться магнитным полем. #физика #physics #математика #gif #опыты #видеоуроки #math #моделирование #анимация
💡 Physics.Math.Code // @physics_lib
Иоганн Риттер в 1801 году высказал мысль о дискретной, зернистой структуре электричества. Вильгельм Вебер в своих работах с 1846 года вводит понятие атома электричества и гипотезу, что его движением вокруг материального ядра можно объяснить тепловыми и световыми явлениями. Майкл Фарадей ввел термин «ион» для носителей электричества в электролите и предположил, что ион обладает неизменным зарядом. Г. Гельмгольц в 1881 году показал, что концепция Фарадея должна быть согласована с уравнениями Максвелла. Джордж Стони в 1881 году впервые рассчитал заряд одновалентного иона при электролизе, а в 1891 году, в одной из теоретических работ Стоней предложил термин «электрон» для обозначения электрического заряда одновалентного иона при электролизе.
Катодные лучи открыты в 1859 году Юлиусом Плюккером, название дано Ойгеном Гольдштейном, который высказал волновую гипотезу: катодные лучи представляют собой процесс в эфире. Английский физик Уильям Крукс высказал идею, что катодные лучи это поток частичек вещества. В 1895 году французский физик Жан Перрен экспериментально доказал, что катодные лучи — это поток отрицательно заряженных частиц, которые движутся прямолинейно, но могут отклоняться магнитным полем. #физика #physics #математика #gif #опыты #видеоуроки #math #моделирование #анимация
💡 Physics.Math.Code // @physics_lib