Physics.Math.Code
140K subscribers
5.16K photos
1.96K videos
5.79K files
4.35K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
加入频道
👨‍🎓Информация для тех, кто хочет развиваться в Data Science

В этом году Центральный университет, созданный при поддержке 50 крупнейших компаний страны, стал одним из самых заметных образовательных проектов - подготовил школьную сборную к безоговорочной победе на первой международной Олимпиаде по ИИ в Болгарии, студенты вуза победили на AI Challenge, известный на весь мир ученый, профессор Горбань, вернулся для работы именно в этом вузе и др.

Недавно магистрант Центрального университета опубликовал статью, где рассказал, как проходит обучение в вузе. Генрих работает lead data scientist и специализируется на компьютерном зрении и 3D. Поступая в вуз, он хотел получить знания по NLP, поэтому выбрал для себя курсы: основы математики для DS, основы баз данных и SQL, продуктовая студия, основы статистики, Machine Learning, основы Python и Soft Skills Lab.

Автор отмечает, основы математики для DS для него оказался довольно непростым, несмотря на опыт с нейросетями и решением математических задач. Особенно полезной для него оказалась Продуктовая студия, в которой студенты проходят все этапы создания продукта: от генерации идеи до презентации инвесторам. Также, в статье студент выделил Soft Skills Lab, который помогает учащимся научиться работать в команде.

По мнению студента, через несколько лет университет будет фигурировать в вакансиях наряду с другими топовыми вузами по направлению DS.

#программирование #python #IT #математика #math #лекции #разработка

💡 Physics.Math.Code // @physics_lib
👍40🙈108🔥6🤷‍♂3🫡1🗿1
Media is too big
VIEW IN TELEGRAM
🚀 Что будет, если добавить жидкий газ в бутылку с водой

Если добавить жидкий газ в бутылку с водой и перевернуть её, она взлетит. Можно взять любую теплую жидкость: вода, кола, спрайт. Самое важное — температура жидкости. Понадобится пластиковая бутылка и перчатки, чтобы не заморозить руки. И самые важный ингредиент — жидкий газ бутан (C₄H₁₀). Температура кипения бутана -0.5 °С. Это означает, что в жидком состоянии он находится при температуре t < -0.5 °С. Достаточно будет наполнить 2/3 бутылки водой, а 1/3 наполнить жидким газом. Через несколько секунд можно будет увидеть, как на поверхности воды плавает жидкость бутанового раствора. Между ними находится газообразная прослойка. Это тот самый эффект Лейденфроста, о котором уже был пост в нашем канале.

Эффект Лейденфроста — это физическое явление, при котором жидкость при непосредственном контакте с массой, температура которой значительно выше температуры кипения жидкости, образует изолирующий слой пара, препятствующий быстрому кипению этой жидкости. Благодаря этому капля парит над поверхностью, а не вступает с ней в физический контакт. Чаще всего это наблюдается при приготовлении пищи; капельки воды капают в кастрюлю, чтобы измерить ее температуру: если температура в кастрюле равна или выше температуры точки Лейденфроста, то вода растекается по сковороде и испаряется дольше, чем в кастрюле с температурой ниже точки Лейденфроста (но все равно выше температуры кипения). Этот эффект также обусловливает способность жидкого азота распространяться по полу.

Итак, холодный бутан плавает на поверхности теплой воды на паровой прослойке. Как только мы переворачиваем бутылку, скорость реакции испарения мгновенно возрастает. Во время переворачивания бутылки теплая вода смешивается с бутаном, и бутан немедленно превращается в газ, который увеличивается в объем более чем в 10 раз. В результате он стремительно пытается выйти из бутылки, поэтом образуется реактивная тяга через узкое горлышко — наша ракета взлетает.
#механика #физика #опыты #эксперименты #динамика #кинематика #physics #лекции #science #наука

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍129🔥3917🤔3😱32🌚2👻1🫡1
Media is too big
VIEW IN TELEGRAM
✏️ «Не существует неталантливого и ленивого ребёнка, существует только ограниченная педагогика». ©️ Шалва Амонашвили

#математика #наука #math #лекции #видеоуроки #эксперименты #maths #science

💡 Physics.Math.Code // @physics_lib
223👍86🔥28💯14🗿8🙈7❤‍🔥3👾31
💫 Сопротивление металлов зависит от температуры

Величина, учитывающая термическое изменение удельного электрического электрического сопротивления называется температурный коэффициент удельного сопротивления — величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу: α = 1/R ⋅ dR/dT . Для большинства металлов и металлических сплавов температурный коэффициент сопротивления положителен: их удельное сопротивление растёт с ростом температуры вследствие рассеяния электронов на фононах (тепловых колебаниях кристаллической решётки). Для полупроводников без примесей он отрицателен (сопротивление с ростом температуры падает), поскольку при повышении температуры всё большее число электронов переходит в зону проводимости, соответственно увеличивается и концентрация дырок. Качественно такой же характер как и у полупроводников и по тем же причинам имеет температурная зависимость сопротивления твёрдых и неполярных жидких диэлектриков. Полярные жидкости уменьшают своё удельное сопротивление с ростом температуры более резко вследствие роста степени диссоциации и уменьшения вязкости. На практике этот эффект применялся для защиты электронных ламп от бросков пускового тока. Температурная зависимость сопротивления металлических сплавов, газов, легированных полупроводников и электролитов носит более сложный характер.

Существуют сплавы (например, константан, манганин), имеющие очень малый температурный коэффициент сопротивления, то есть их удельное сопротивление очень слабо зависит от температуры. Эти сплавы применяются в электроизмерительной аппаратуре.

В чистых металлах и большинстве сплавов удельное электрическое сопротивление растёт при увеличении температуры. Это объясняется тем, что с ростом температуры увеличивается интенсивность колебания атомов в узлах кристаллической решетки проводника, что препятствует движению свободных электронов. В полупроводниках и диэлектриках удельное электрическое сопротивление с ростом температуры уменьшается. Это объясняется тем, что с увеличением температуры увеличивается концентрация носителей электрического заряда.|
Удельное сопротивление: ρ = ρ₀ ⋅ (1 + α⋅ΔT) . Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим. При понижении температуры сопротивление металлов должно уменьшаться. В 1911 году датский физик Х. Каммерлинг - Оннес открыл явление, названное сверхпроводимостью. Исследуя зависимость сопротивления ртути от температуры, он обнаружил, что при температуре 4,12 К сопротивление ртути исчезает. В сверхпроводящее состояние могут перейти многие химические соединения и сплавы. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах.

Вещества, находящиеся в сверхпроводящем состоянии, приобретают новые свойства. Наиболее важным из них является способность длительное время (многие годы) поддерживать без затухания электрический ток в проводниках.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Теоретическое объяснение явления сверхпроводимости на основе квантово-механических представлений было дано учеными Дж. Бардиным, Дж. Шриффером (США) и Н. Н. Боголюбовым (СССР) в 1957 г. В 1986 году была обнаружена высокотемпературная сверхпроводимость (при 100 К). В настоящее время ведутся интенсивные работы по поиску новых веществ переходящими в сверхпроводящее состояние при более высокой температуре. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если удастся создать сверхпроводник при нормальной температуре, то будет решена проблема передачи электроэнергии по проводам без потерь. #физика #электродинамика #наука #physics #science #электричество #мкт #научные_фильмы #видеоуроки #лекции

💡 Physics.Math.Code // @physics_lib
🔥42👍34126❤‍🔥2👏2
📈 Изохорный (изохорический) процесс (от др.-греч. ἴσος — «равный» и χώρος — «место») — термодинамический изопроцесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать или охлаждать вещество в сосуде неизменного объёма. При изохорическом процессе давление идеального газа прямо пропорционально его температуре (см. Закон Шарля). В реальных газах закон Шарля выполняется приближённо.

Наиболее часто первые исследования изохорного процесса связывают с Гийомом Амонтоном. В своей работе «Парижские мемуары» в 1702 году он описал поведение газа в фиксированном объёме внутри так называемого «воздушного термометра». Жидкость в нём находится в равновесии под воздействием давления газа в резервуаре и атмосферным давлением. При нагревании давление в резервуаре увеличивается, и жидкость вытесняется в выступающую трубку. Зависимость между температурой и давлением была установлена в виде: p₁/p₂ = (1 + α⋅t₁) / (1 + α⋅t₂) .

В 1801 году Джон Дальтон в двух своих эссе опубликовал эксперимент, в котором установил, что все газы и пары, исследованные им при постоянном давлении, одинаково расширяются при изменении температуры, если начальная и конечная температура одинакова. Данный закон получил название закона Гей-Люссака, так как Гей-Люссак вскоре провёл самостоятельные эксперименты и подтвердил одинаковое расширение различных газов, причём получив практически тот же самый коэффициент, что и Дальтон. Впоследствии он же объединил свой закон с законом Бойля — Мариотта, что позволило описывать в том числе и изохорный процесс.

🔥Практическое применение: При идеальном цикле Отто, который приближённо воспроизведён в бензиновом двигателе внутреннего сгорания, такты 2—3 и 4—1 являются изохорными процессами. Работа, совершаемая на выходе двигателя, равна разности работ, которую произведёт газ над поршнем во время третьего такта (то есть рабочего хода), и работы, которую затрачивает поршень на сжатие газа во время второго такта. Так как в двигателе, работающем по циклу Отто используется система принудительного зажигания смеси, то происходит сжатие газа в 7—12 раз.
В цикле Стирлинга также присутствуют два изохорных такта. Для его осуществления в двигателе Стирлинга добавлен регенератор. Газ, проходя через наполнитель в одну сторону, отдаёт тепло от рабочего тела к регенератору, а при движении в другую сторону отдаёт его обратно рабочему телу. Идеальный цикл Стирлинга достигает обратимости и тех же величин КПД что и цикл Карно. Изохорный процесс — также процесс, протекающий в автоклавах и пьезометрах. #физика #термодинамика #опыты #мкт #теплота #нагрев #лекции #physics #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7423🔥10🤯42🤩2
Media is too big
VIEW IN TELEGRAM
😠 Опыты по физике. Конвекция в жидкости:
▪️ в круглодонной колбе;
▪️ в U-образной трубке


Конвекция (от лат. convectiō — «перенесение») — вид теплообмена, при котором внутренняя энергия передаётся струями и потоками самого вещества. Существует так называемая естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решётка из конвекционных ячеек.

Различают ламинарную и турбулентную конвекцию.

Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков. Благодаря тому же явлению движутся тектонические плиты. Конвекция ответственна за появление гранул на Солнце.

При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.

Конвекцией также называют перенос теплоты, массы или электрических зарядов движущейся средой.
#физика #термодинамика #опыты #мкт #теплота #нагрев #лекции #physics #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4611🔥8🤩2
This media is not supported in your browser
VIEW IN TELEGRAM
Звёздообразный или радиальный двигатель — поршневой двигатель внутреннего сгорания, цилиндры которого расположены радиальными лучами вокруг одного коленчатого вала через равные углы. Звездообразный двигатель имеет небольшую длину и позволяет компактно размещать большое количество цилиндров. Нашёл широкое применение в авиации.

Главное отличие звездообразного двигателя от поршневых двигателей других типов заключается в конструкции кривошипно-шатунного механизма. Один шатун является главным (он похож на шатун обычного двигателя с рядным расположением цилиндров), остальные являются прицепными и крепятся к главному шатуну по его периферии (такой же принцип применяется в некоторых V-образных двигателях). Эксплуатационным недостатком любого звездообразного двигателя является возможность протекания масла в нижние цилиндры во время стоянки, в связи с чем требуется перед запуском двигателя убедиться в отсутствии масла в нижних цилиндрах. Запуск двигателя при наличии масла в нижних цилиндрах приводит к гидроудару и поломке кривошипно-шатунного механизма. Этот недостаток неустраним, поскольку он является конструкционным. В зависимости от размеров и мощности двигателя, звездообразные двигатели могут за счёт удлинения коленчатого вала образовывать несколько звёзд-отсеков. Четырёхтактные звездообразные моторы обычно имеют нечётное число цилиндров в отсеке — это позволяет давать искру в цилиндрах «через один». Возможна работа и с чётным количеством цилиндров (чаще всего — при расположении цилиндров в несколько рядов).

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥1895🗿3
This media is not supported in your browser
VIEW IN TELEGRAM
🐝 «Nano Bee». Двигатель объемом 0,006 см³

Как вам двигатель, который может расположиться на монетке целиком. Да, работающий дизельный двигатель! Главный «гений» этих механизмов – изобретатель Рональд Валентайн, инженерный вундеркинд, обучавшийся в Германии и начавший делать самые маленькие двигатели внутреннего сгорания в мире. Своей жизненной целью Рональд ставит доказать всем, что несмотря на то, что его двигатели очень малы, они на самом деле работают. Все двигатели Валентайна собраны полностью вручную, на станке с ЧПУ ни одна деталь не создавалась. Это высококачественные маленькие дизельные звери.

📷 Смотреть фотографии мини-ДВС

Самый маленький из них - это дизельный двигатель "Nano Bee" размером в 22 мм в длину, с диаметром поршня 2 мм, ходом – 3 мм и объемом двигателя 0,006 куб. см . "Nano Bee" имеет впуск и выпуск, диаметром по 3 мм, и общий вес всего 3 грамма. Тем не менее, двигатель раскручивает 32-мм винт до 12800 оборотов в минуту! Крис Валентайн сделал "Nano Bee" из алюминия и стального прутка, допуски изготовления потрясают - до одной десятитысячной сантиметра. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

Самый маленький четырехцилиндровый ДВС в мире

Звёздообразный или радиальный двигатель

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥12032👍267🤔5🥰3🌚1😈1
Media is too big
VIEW IN TELEGRAM
⚙️ Моторист рассказывает о Volga Siber 🚘

ГАЗ Volga Siber (рус. Волга Сайбер) — российский среднеразмерный седан, выпускавшийся с 2008 по 2010 год. Представлен российской компанией «Группа ГАЗ» на выставке «Интеравто-2007» в Москве 29 августа 2007 года как GAZ Siber. В дальнейшем торговое название модели было изменено на Volga Siber. В 2008—2010 годах было выпущено лишь несколько небольших партий. Внешне от американских автомобилей-доноров Volga Siber отличается бамперами, дизайном радиаторной решётки и светотехникой. Автомобиль адаптирован к эксплуатации в российских условиях, в частности, повышена жёсткость подвески, улучшена управляемость, используется крепёж только с метрической, а не дюймовой, резьбой. Из явных недостатков в конструкции в российских условиях можно выделить малый клиренс — он составляет всего 140 мм.

Модель планировалось выпускать в двух комплектациях: Comfort (c двигателями 2,0 и 2,4) и Lux (двигатель 2,4 л). Имелись и планы по установке 2,7-литрового V6. Тем не менее в серийное производство пошли только 2,4-литровые модификации с четырёхступенчатой автоматической трансмиссией (АКПП). С начала апреля 2010 года появилась версия Volga Siber с 2,4-литровым двигателем и пятиступенчатой механической КПП (МКПП) NV-T350 производства New Venture Gear. Согласно информации производителя, такая модификация была создана с учётом пожеланий потенциальных покупателей. Для работы с МКПП двигатель седана доработали — в частности, повысили крутящий момент на низких оборотах. В результате базовой комплектацией Volga Siber стало исполнение Comfort с четырёхцилиндровым двигателем объёмом 2,429 л. с клапанным механизмом DOHC (143 л. с., 210 Н·м) и пятиступенчатой МКПП. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

🐝 «Nano Bee». Двигатель объемом 0,006 см³

Самый маленький четырехцилиндровый ДВС в мире

Звёздообразный или радиальный двигатель

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3124👍18😱6🌚5👏4🤯4🆒2🗿1
⚙️ Подборка очень интересных учебных видео о физике работе ДВС

1. Как устроен автомобильный двигатель. 3D анимация сборки автомобильного двигателя внутреннего сгорания.
2. Как работает двухтактный двигатель скутера
3. Двигатель в разрезе
4. Как работает паровой двигатель
5. Двигатель Стирлинга
6. Миниатюрный паровой двигатель
7. Мини-двигатель с AliExpress
8. Паровой или реактивный двигатель
9. Конструкция ДВС
10. Конструирование систем смазки и охлаждения ДВС
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

🐝 «Nano Bee». Двигатель объемом 0,006 см³

Самый маленький четырехцилиндровый ДВС в мире

Звёздообразный или радиальный двигатель

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍44🔥1512❤‍🔥4🤩21
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Основное отличие двухтактного и четырёхтактного двигателей внутреннего сгорания (ДВС) заключается в количестве тактов — движений поршня, за которые происходит рабочий цикл. В двухтактном двигателе рабочий цикл совершается за один оборот коленчатого вала, в четырёхтактном — за два оборота.

▪️Двухтактный двигатель. Принцип работы: один полный рабочий цикл (впуск, сжатие, рабочий ход и выпуск) происходит за два такта поршня.
— Отдельного газораспределительного механизма нет — роль впускных и выпускных клапанов выполняют отверстия в стенках цилиндра.
— Топливо обычно смешивается с маслом для смазки движущихся частей.
— Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырёхтактного за счёт большего числа рабочих циклов. Однако неполное использование хода поршня для расширения и затраты части вырабатываемой мощности на продувку приводят к увеличению мощности только на 60–70%.

▪️Четырехтактный двигатель. Принцип работы: рабочий цикл состоит из четырёх тактов (ходов поршня).
— Для переключения полости цилиндра на впуск и на выхлоп используется отдельный газораспределительный механизм.
— Каждая фаза газообмена выполняется во время отдельного полуоборота коленчатого вала.
— Расход топлива ниже, так как топливная смесь полностью сгорает в цилиндре, и только потом, когда открывается выпускной клапан, отработанные газы выходят наружу.
— Экологичность — за счёт полного сгорания топливной смеси выделяется меньше вредных веществ в атмосферу.
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7529🔥10❤‍🔥31
Media is too big
VIEW IN TELEGRAM
♾️ Фигуры Лиссажу — это замкнутые плоские кривые, описываемые точкой, движение которой является суперпозицией двух взаимно перпендикулярных колебаний. Впервые были подробно изучены французским математиком Ж. А. Лиссажу в 1857–1858 гг..

Вид фигур Лиссажу зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний:
▪️ В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы. При разности фаз 0 или π вырождаются в отрезки прямых, а при разности фаз π/2 и равенстве амплитуд превращаются в окружность.
▪️ Если периоды обоих колебаний близки, то разность фаз линейно изменяется, вследствие чего наблюдаемый эллипс всё время деформируется.
▪️ При многократно отличающихся по величине периодах колебаний фигуры Лиссажу представляют собой запутанную картину и не наблюдаются, например, на экране осциллографа.

Применение в технике — сравнение частот: Если подать на входы «X» и «Y» осциллографа сигналы близких частот, то на экране можно увидеть фигуры Лиссажу. Этот метод широко используется для сравнения частот двух источников сигналов и для подстройки одного источника под частоту другого. Когда частоты близки, но не равны друг другу, фигура на экране вращается, причём период цикла вращения является величиной, обратной разности частот, например, при периоде оборота 2 секунды разница в частотах сигналов равна 0,5 Гц. При равенстве частот фигура застывает неподвижно, в любой фазе, однако на практике, за счёт кратковременных нестабильностей сигналов, фигура на экране осциллографа обычно чуть-чуть подрагивает. Использовать для сравнения можно не только одинаковые частоты, но и находящиеся в кратном отношении, например, если образцовый источник может выдавать частоту только 5 МГц, а настраиваемый источник — 2,5 МГц.
#физика #электродинамика #наука #physics #science #лекции #видеоуроки #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
👍8722❤‍🔥159🔥72
Принципы_математического_анализа_Уольтера_Рудина.zip
14.9 MB
📕 [International series in pure and applied mathematics] Principles of Mathematical Analysis [2024] Walter Rudin

The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.

📙 «Принципы математического анализа» (Международная серия по чистой и прикладной математике) Уольтера Рудина


Книга представляет собой современный курс математического анализа, написанный известным американским учёным. По стилю и содержанию она отличается от имеющихся традиционных курсов. Помимо обычно включаемого материала, книга содержит основы теории метрических пространств, теорию интегрирования дифференциальных форм на поверхностях, теорию интеграла и т.д. В конце каждой главы приводятся удачно подобранные упражнения (общим числом около 200). Среди них есть как простые примеры, иллюстрирующие теорию, так и трудные задачи, существенно дополняющие основной текст книги. Книга У. Рудина может служить учебным пособием для студентов математических и физических факультетов университетов, педагогических институтов и некоторых втузов. Она будет полезна аспирантам и преподавателям этих учебных заведений, а также инженерам, желающим расширить свои знания по математическому анализу.
#математика #calculus #наука #math #science #лекции #maths #mathematics #книги

💡 Physics.Math.Code // @physics_lib
👍4927🔥8🤷‍♂2🤩2😍2🥰1🙏1
📘 Секреты интересных интегралов [2020] Пол Дж. Нахин
📗 Inside Interesting Integrals [2020] Paul J. Nahin

💾 Скачать книги [RU + EN]

Издание доставит истинное удовольствие математикам, физикам, думающим студентам, а также всем читателям, кто еще только планирует стать великим учёным!

«Если мы действительно что-то знаем, то мы знаем это благодаря изучению математики» (Пьер Гассенди).

☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047 (СБП) ЮMoney: 410012169999048

#математика #calculus #наука #math #science #лекции #maths #mathematics #книги

💡 Physics.Math.Code // @physics_lib
🔥37👍1210🤯3😍3
Секреты_интересных_интегралов_RU+EN.zip
50.9 MB
📘 Секреты интересных интегралов [2020] Пол Дж. Нахин

Коллекция ловких трюков, хитрых подстановок и множество других невероятно искусных, удивительно озорных и дьявольски соблазнительных маневров для вычисления почти 200 запутанных определенных интегралов из физики, техники и математики плюс 60 сложных задач с полными, подробными решениями!
Какой смысл вычислять определенные интегралы, если вы не можете все их решить? То, что делает ценным нахождение конкретных интегралов – это не решения и ответы, которые мы получим, а скорее методы, которые мы будем использовать для получения этих ответов; методы, которые вы можете использовать для нахождения будущих интегралов.

Если вам что-то говорят имена Римана, Бернулли, Эйлера, Френеля, Дирихле, Фурье, Коши, Фейнмана — эта книга точно для вас. Издание доставит истинное удовольствие математикам, физикам, думающим студентам, а также всем читателям, кто еще только планирует стать великим учёным!

📗 Inside Interesting Integrals [2020] Paul J. Nahin

What’s the point of calculating definite integrals since you can’t possibly do them all?
What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future.
This book, now in its second edition, is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion.
Paul J. Nahin is professor emeritus of electrical engineering at the University of New Hampshire. He is the
author of 21 books on mathematics, physics, and the history of science, published by Springer, and the university presses of Princeton and Johns Hopkins. He received the 2017 Chandler Davis Prize for Excellence in Expository Writing in Mathematics (for his paper “The Mysterious Mr. Graham,” The Mathematical Intelligencer, Spring 2016). He gave the invited 2011 Sampson Lectures in Mathematics at Bates College, Lewiston, Maine.

#математика #calculus #наука #math #science #лекции #maths #mathematics #книги

💡 Physics.Math.Code // @physics_lib
👍4420🔥15🤩4🤯3
⚙️ Принцип работы швейной машинки заключается в выполнении челночной строчки с помощью различных механизмов: механизма иглы, челнока, механизма подачи нити и механизма перемещения материала. Все механизмы движутся синхронно усилием от главного вала, приводимого во вращение электрическим или механическим приводом.

Игла, в ушко которой заправлена нить, совершает возвратно-поступательное движение. В результате:
1. Игла прокалывает материал, проводит через него верхнюю нить и создаёт у ушка иглы петлю.
2. При движении иглы вниз верхняя кромка ушка натягивает нитку, и обе её ветви напрягаются.
3. Когда игла начинает подъём при обратном ходе, натяжение ниток ослабевает, и обе ниточные ветви медленно расходятся в стороны, образуя петлю грушевидной формы.

Челнок обеспечивает захват петли и её обвод вокруг шпульки с нижней нитью. Процесс работы:
1. Формирование петли: когда игла опускается в ткань, она проводит с собой нить, челнок захватывает эту нить и образует петлю.
2. Проход нижней нити: через сформированную петлю проходит нить из нижней катушки (шпульки), лежащей в челноке.
3. Затягивание стежка: когда игла поднимается обратно, петля затягивается, и нить с шпульки закрепляется, формируя стежок.
#топология #видеоуроки #лекции #геометрия #физика #математика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62🔥2621🤔4🤯3❤‍🔥2🤩1
Ионно-плазменный двигатель своими руками ⚡️

Ионный двигатель — тип электрического ракетного двигателя, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.

Достоинством этого типа двигателей является малый расход топлива и продолжительное время функционирования (максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трёх лет).
Недостатком ионного двигателя является ничтожная по сравнению с химическими двигателями тяга.

По сравнению с двигателями с ускорением в магнитном слое ионный двигатель обладает большим энергопотреблением при равном уровне тяги. Ионные двигатели используют повышенные напряжения, обладают более сложной схемой и конструкцией, что усложняет решение задачи обеспечения высокой надёжности и электрической прочности двигателя.

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с, по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.

В существующих реализациях ионного двигателя в качестве источника энергии, необходимой для ионизации топлива, используются солнечные батареи.

Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон и т. п.), но иногда и ртуть. В ионизатор подаётся топливо, которое само по себе нейтрально, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом, в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные ионы притягиваются к системе извлечения, состоящей из двух или трёх сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 Вольт на внутренней против -225 Вольт на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается, во-первых, для того, чтобы корпус корабля оставался нейтрально заряженным, а во-вторых, чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю. #физика #электродинамика #наука #physics #science #лекции #видеоуроки #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
31👍31❤‍🔥8🔥6🤔32