Media is too big
VIEW IN TELEGRAM
♾️ Фигуры Лиссажу — это замкнутые плоские кривые, описываемые точкой, движение которой является суперпозицией двух взаимно перпендикулярных колебаний. Впервые были подробно изучены французским математиком Ж. А. Лиссажу в 1857–1858 гг..
Вид фигур Лиссажу зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний:
▪️ В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы. При разности фаз 0 или π вырождаются в отрезки прямых, а при разности фаз π/2 и равенстве амплитуд превращаются в окружность.
▪️ Если периоды обоих колебаний близки, то разность фаз линейно изменяется, вследствие чего наблюдаемый эллипс всё время деформируется.
▪️ При многократно отличающихся по величине периодах колебаний фигуры Лиссажу представляют собой запутанную картину и не наблюдаются, например, на экране осциллографа.
Применение в технике — сравнение частот: Если подать на входы «X» и «Y» осциллографа сигналы близких частот, то на экране можно увидеть фигуры Лиссажу. Этот метод широко используется для сравнения частот двух источников сигналов и для подстройки одного источника под частоту другого. Когда частоты близки, но не равны друг другу, фигура на экране вращается, причём период цикла вращения является величиной, обратной разности частот, например, при периоде оборота 2 секунды разница в частотах сигналов равна 0,5 Гц. При равенстве частот фигура застывает неподвижно, в любой фазе, однако на практике, за счёт кратковременных нестабильностей сигналов, фигура на экране осциллографа обычно чуть-чуть подрагивает. Использовать для сравнения можно не только одинаковые частоты, но и находящиеся в кратном отношении, например, если образцовый источник может выдавать частоту только 5 МГц, а настраиваемый источник — 2,5 МГц.
#физика #электродинамика #наука #physics #science #лекции #видеоуроки #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Вид фигур Лиссажу зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний:
▪️ В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы. При разности фаз 0 или π вырождаются в отрезки прямых, а при разности фаз π/2 и равенстве амплитуд превращаются в окружность.
▪️ Если периоды обоих колебаний близки, то разность фаз линейно изменяется, вследствие чего наблюдаемый эллипс всё время деформируется.
▪️ При многократно отличающихся по величине периодах колебаний фигуры Лиссажу представляют собой запутанную картину и не наблюдаются, например, на экране осциллографа.
Применение в технике — сравнение частот: Если подать на входы «X» и «Y» осциллографа сигналы близких частот, то на экране можно увидеть фигуры Лиссажу. Этот метод широко используется для сравнения частот двух источников сигналов и для подстройки одного источника под частоту другого. Когда частоты близки, но не равны друг другу, фигура на экране вращается, причём период цикла вращения является величиной, обратной разности частот, например, при периоде оборота 2 секунды разница в частотах сигналов равна 0,5 Гц. При равенстве частот фигура застывает неподвижно, в любой фазе, однако на практике, за счёт кратковременных нестабильностей сигналов, фигура на экране осциллографа обычно чуть-чуть подрагивает. Использовать для сравнения можно не только одинаковые частоты, но и находящиеся в кратном отношении, например, если образцовый источник может выдавать частоту только 5 МГц, а настраиваемый источник — 2,5 МГц.
#физика #электродинамика #наука #physics #science #лекции #видеоуроки #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
👍88❤22❤🔥15⚡9🔥7✍2
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование
Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]
Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.
В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее. Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. [Подробные расчеты]
Быстрое изменение магнитного потока в катушках индуктивности или массивных деталях магнитопровода способствуют возникновению существенных по величине вихревых токов. Эти вихревые токи создают индуцированное магнитное поле, направленное так, чтобы поддержать прежнее состояние системы, то есть подавить внешнее воздействие, то есть уменьшить возрастающий поток.
В итоге в медном цилиндре создаются такие токи, которые порождают поле направленное против поля быстро приближающегося магнита. Это приводит к демпфированию магнита и выделению тепла внутри проводника (массивного куска меди). Количество энергии, переданной проводнику в виде тепла, равно изменению кинетической энергии, теряемой магнитом — чем больше потеря кинетической энергии магнита (произведение его массы и скорости), тем больше тепла накопление в проводнике и тем сильнее демпфирующий эффект. Вихревые токи, индуцированные в проводниках, намного сильнее, когда температура приближается к криогенным уровням. #gif #физика #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
👍61❤37🔥9⚡4🤯1
This media is not supported in your browser
VIEW IN TELEGRAM
▪️ В качестве активной среды — кристалл искусственного рубина ( оксид алюминия Al₂O₃ с небольшой примесью хрома Cr ).
▪️ Из кристалла был изготовлен стержень в виде цилиндра диаметром 1 и длиной 2 см, который в процессе работы подвергался облучению излучением импульсной газоразрядной лампы.
▪️ Резонатором служил резонатор Фабри-Перо, образованный серебряными зеркальными покрытиями, нанесёнными на торцы стержня.
▪️ Лазер работал в импульсном режиме, излучая свет с длиной волны 694,3 нм.
▪️ Майман предложил принцип накачки рабочего тела — короткими вспышками света от лампы-вспышки.
▪️ Зеркальные покрытия на торцах кристалла создавали положительную обратную связь, чтобы усилитель стал генератором.
▪️ Расчёты Маймана показали, что атомы хрома в кристалле рубина имеют подходящую систему энергетических уровней, которая делает возможной генерацию лазерного излучения.
▪️ Первый лазер Маймана стал отправной точкой для развития лазерных технологий. Лазеры стали незаменимыми инструментами в физике, химии, биологии и других научных дисциплинах, позволили учёным проводить более точные эксперименты и измерения.
▪️ Лазеры стимулировали дальнейшие исследования и инновации в области оптики и фотоники, привели к разработке новых типов лазеров, увеличению мощности и эффективности.
Импульсные лазеры мощнее непрерывных в плане мощности:
▫️Непрерывные лазеры характеризуются постоянной выходной мощностью, которая может достигать десятков киловатт. Это делает их идеальными для задач, требующих высокой мощности на протяжении длительного времени, таких как лазерная резка или сварка металлов.
▫️Импульсные лазеры работают иначе — они передают энергию в короткие, мощные вспышки. Это делает их менее энергоёмкими, поскольку импульсы могут достигать высокой пиковой мощности при минимальном общем энергопотреблении. Такой подход позволяет выполнять точные, деликатные работы, не перегревая материал.
Таким образом, для крупных производств, где необходима высокая мощность и стабильность, лучше подойдут непрерывные лазеры, а для точных задач, таких как микросварка, очистка поверхности или гравировка, рекомендуется использовать импульсные лазеры. #лазер #техника #science #физика #physics #производство
💥 Лазерная очистка поверхности старой монеты
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍50⚡47❤34🔥18😱4🤩3🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
Лазерная наплавка — метод нанесения нового слоя металла на деталь или заготовку с помощью сфокусированного лазерного излучения в среде защитного газа. Применяется для восстановления гребного винта — устранения эрозионных разрушений лопастей, которые возникают из-за коррозии и износа в морской воде.
Процесс наплавки гребного винта лазерной сваркой включает несколько этапов:
1. Подготовка поверхности — изношенный слой металла удаляют до чистового с помощью механической обработки (токарной, фрезерной или шлифовальной).
2. Выбор материала — для наплавки используют специальный металлический порошок или сплав, выбор зависит от свойств детали, условий эксплуатации и требований к восстановлению.
3. Лазерное воздействие — мощный лазерный луч фокусируется на поверхности, энергия лазера нагревает поверхность до температуры плавления, создавая «ванну расплава».
4. Наплавка материала — металлический порошок или проволока подаются на плавящуюся поверхность, материал моментально плавится и сливается с базовой поверхностью, образуя новый металлический слой.
5. Контроль нанесения — процесс контролируется с высокой точностью, позволяя равномерно наносить слой материала и достичь желаемых геометрических характеристик.
6. Охлаждение — после наплавки деталь быстро остывает, что предотвращает коробление и разупрочнение основного металла.
7. Финишная обработка — проточка, шлифовка или фрезерование для достижения нужной геометрии и шероховатости.
Специалисты отмечают, что лазерная наплавка позволяет увеличить срок службы гребного винта — наплавленный слой превосходит основной металл по физико-механическим свойствам, исключаются поры и несплавления. Однако есть и ограничения: заниженная мощность излучения (менее 1,4 кВт) может привести к образованию внутренних структурных дефектов (пор, несплавлений), а высокая мощность (более 2,2 кВт) — к дефектам структуры, перегревая ванну расплава. #лазер #техника #science #физика #physics #производство
💥 Лазерная очистка поверхности старой монеты
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥77👍32❤18🤯5⚡2
Media is too big
VIEW IN TELEGRAM
Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.
Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.
➰ О свойствах параболы ➿
Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib
#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍40❤29❤🔥11🔥8🤩1
Ионный двигатель — тип электрического ракетного двигателя, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.
✅ Достоинством этого типа двигателей является малый расход топлива и продолжительное время функционирования (максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трёх лет).
❌ Недостатком ионного двигателя является ничтожная по сравнению с химическими двигателями тяга.
По сравнению с двигателями с ускорением в магнитном слое ионный двигатель обладает большим энергопотреблением при равном уровне тяги. Ионные двигатели используют повышенные напряжения, обладают более сложной схемой и конструкцией, что усложняет решение задачи обеспечения высокой надёжности и электрической прочности двигателя.
Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с, по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.
В существующих реализациях ионного двигателя в качестве источника энергии, необходимой для ионизации топлива, используются солнечные батареи.
Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон и т. п.), но иногда и ртуть. В ионизатор подаётся топливо, которое само по себе нейтрально, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом, в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные ионы притягиваются к системе извлечения, состоящей из двух или трёх сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 Вольт на внутренней против -225 Вольт на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается, во-первых, для того, чтобы корпус корабля оставался нейтрально заряженным, а во-вторых, чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю. #физика #электродинамика #наука #physics #science #лекции #видеоуроки #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍49❤37❤🔥10🔥8🤔5⚡3
This media is not supported in your browser
VIEW IN TELEGRAM
Это гибкая связь между двумя вращающимися частями: стартер и двигатель, например.
Если вы хотите передавать крутящий момент между двумя нефиксированными, почти параллельными, несоосными осями, то выгодно использовать гибкие ремни.
▪️ Первоначально нет чистого крутящего момента, поэтому форма муфты определяется тем, что каждая полоса действует как пружина, и они действуют друг против друга.
▪️ Когда приводной двигатель начинает вращаться, крутящий момент становится наибольшей силой, поэтому муфта закручивается вверх.
▪️ Когда он достигает рабочей скорости, центростремительная сила лент становится наибольшей, поэтому средние части снова выскакивают.
Преимущества: отличная изоляция между двигателем и нагрузкой, относительно высокий КПД при использовании постоянной угловой скорости/крутящего момента, очень простой и легкий ремонт.
Проблемы: Максимальная крутящая нагрузка пропорциональна модулю Юнга лент, а также пределу прочности на разрыв. Медленная реакция.
Гибкая подвижная муфта (гибкая, подвижная, компенсирующая) — это устройство, которое позволяет валам немного смещаться относительно друг друга, но при этом обеспечивает их надёжное соединение. Такие муфты компенсируют угловые, осевые и радиальные смещения валов, а также гасят вибрации и удары, возникающие при работе механизмов. #механика #физика #техника #physics #двигатель #engine #maths #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍99❤21🔥16✍3❤🔥1😱1
Media is too big
VIEW IN TELEGRAM
Водяной насос со спиральной трубой является методом откачки воды с подливным водоподъемным колесом, которое имеет лопатку, соединенную со спиральной трубой. По мере поворота колеса, лопатка обеспечивает спиральную трубу либо водой, либо воздухом. Давление от гидростатического напора, вырабатываемого водяным столбом, обеспеченного лопаткой, добавляется к давлению от предыдущих лопаток, и, таким образом, при повороте колеса увеличивается давление воды с каждым поворотом спирали. Основная характеристика спирального водяного насоса состоит в том, что он может откачивать воду без необходимости в электричестве или топливе. Он работает на энергии расхода воды. После сооружения, спиральный водяной насос способен выталкивать воду на высоту до 30 метров (горизонтальный толчок) и на расстояние до 70 метров (вертикальный толчок). Толчок воды (насколько вода будет вытолкнута горизонтально или вертикально) зависит от размера колеса Спирального Водяного Насоса, и сколько труб уложено вокруг колеса.
Спиральный водяной насос: Когда колесо вращается при помощи гидроэнергии, «заглатывание» обеспечивает поступление воды или воздуха в трубу при каждом
вращении. Сочетание воды и воздуха в трубе создает увеличенное давление при каждом вращении колеса. Данное созданное давление позволяет воде выталкиваться на определенную высоту.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41❤17🔥12🙈2🤯1😱1
📚 «Необыкновенная физика обыкновенных явлений» — книга Кл. Э. Суорца (перевод с английского — Е. И. Бутикова и А. С. Кондратьева). Вышла в двух томах [1986–1987]
💾 Скачать книги
Предназначена для учащихся общеобразовательных и профессиональной школ, а также для лиц, занимающихся самообразованием. В русском издании книга разделена на два тома:
▪️ Первый том — главы, посвящённые механике и термодинамике.
▪️ Второй том — главы, посвящённые волнам, оптике, электромагнетизму, физике микромира.
Некоторые положительные стороны, отмеченные читателями:
✅ удачный подбор опытов и наблюдений, которые, не заменяя лабораторные работы, позволяют «прочувствовать» важные стороны изучаемых явлений;
✅ лаконичность и конспективность, которые создают условия для лучшего усвоения и запоминания изученного.
Есть и негативные отзывы:
❌ некоторые читатели отмечают, что автор иногда ограничивается рассмотрением некоторых частных случаев, что может спровоцировать читателя на неверные обобщения.
#физика #physics #science #подборка_книг #наука #опыты #задачи
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Предназначена для учащихся общеобразовательных и профессиональной школ, а также для лиц, занимающихся самообразованием. В русском издании книга разделена на два тома:
▪️ Первый том — главы, посвящённые механике и термодинамике.
▪️ Второй том — главы, посвящённые волнам, оптике, электромагнетизму, физике микромира.
Некоторые положительные стороны, отмеченные читателями:
✅ удачный подбор опытов и наблюдений, которые, не заменяя лабораторные работы, позволяют «прочувствовать» важные стороны изучаемых явлений;
✅ лаконичность и конспективность, которые создают условия для лучшего усвоения и запоминания изученного.
Есть и негативные отзывы:
❌ некоторые читатели отмечают, что автор иногда ограничивается рассмотрением некоторых частных случаев, что может спровоцировать читателя на неверные обобщения.
#физика #physics #science #подборка_книг #наука #опыты #задачи
💡 Physics.Math.Code // @physics_lib
🔥25👍17❤13🤩2👏1
Необыкновенная_физика_обыкновенных_явлений_1986_1987_Суорц.zip
8.8 MB
📚 «Необыкновенная физика обыкновенных явлений» — книга Кл. Э. Суорца (перевод с английского — Е. И. Бутикова и А. С. Кондратьева). Вышла в двух томах [1986–1987]
В книге дано современное изложение начал физики. Каждая графа начинается разделом "Знакомство с явлениями", в котором читателю предлагается проделать простейшие опыты и наблюдения с помощью легкодоступных подручных средств. Подобранные примеры с минимальным использованием математических средств позволяют развить физическую интуицию и умение применять знание физики в практической деятельности. В русском издании книга разделена на два тома. В первый том вошли главы, посвященные механике и термодинамике. Во второй том вошли главы, посвященные волнам, оптике, электромагнетизму, физике микромира. Для учащихся общеобразовательных и профессиональной школ, а также для лиц, занимающихся самообразованием.
▪️ Каждая глава начинается разделом «Знакомство с явлениями», в котором читателю предлагается проделать простейшие опыты и наблюдения с помощью легкодоступных подручных средств.
▪️ Изложение теоретического материала с минимальным использованием математических средств.
▪️ Текст сопровождается многочисленными рисунками, схемами, диаграммами и графиками, а зачастую — лаконичными простыми оценками и расчётами.
#физика #physics #science #подборка_книг #наука #опыты #задачи
💡 Physics.Math.Code // @physics_lib
В книге дано современное изложение начал физики. Каждая графа начинается разделом "Знакомство с явлениями", в котором читателю предлагается проделать простейшие опыты и наблюдения с помощью легкодоступных подручных средств. Подобранные примеры с минимальным использованием математических средств позволяют развить физическую интуицию и умение применять знание физики в практической деятельности. В русском издании книга разделена на два тома. В первый том вошли главы, посвященные механике и термодинамике. Во второй том вошли главы, посвященные волнам, оптике, электромагнетизму, физике микромира. Для учащихся общеобразовательных и профессиональной школ, а также для лиц, занимающихся самообразованием.
▪️ Каждая глава начинается разделом «Знакомство с явлениями», в котором читателю предлагается проделать простейшие опыты и наблюдения с помощью легкодоступных подручных средств.
▪️ Изложение теоретического материала с минимальным использованием математических средств.
▪️ Текст сопровождается многочисленными рисунками, схемами, диаграммами и графиками, а зачастую — лаконичными простыми оценками и расчётами.
#физика #physics #science #подборка_книг #наука #опыты #задачи
💡 Physics.Math.Code // @physics_lib
👍34🔥18❤16🤩1
Media is too big
VIEW IN TELEGRAM
▪️ Сложение колебаний динамика и прямолинейного потока вода, в результате которого получается бегущая волна около синусоидальной формы. Однако волна в некоторые моменты времени как будто замирает в воздухе. Связано это со стробоскопическим эффектом: частота камеры иногда точно совпадает с частотой колебаний динамика, в результате подвижная струя кажется неподвижной. Стробоскопический эффект при съёмке заключается в иллюзии неподвижности быстро движущихся тел.
▪️Неодимовый магнит может использоваться для сбора железной стружки благодаря высокой силе притяжения, которая характерна для этого типа магнитов. Стружка, особенно железосодержащая, притягивается к магниту, что позволяет улавливать её в разных областях. Магнит притягивает ферромагнитные частицы (железо, сталь). Цветные металлы и неметаллические загрязнения остаются незамеченными. Для очистки моторного масла от мелкой металлической стружки, которая образуется из-за трения деталей двигателя. Магнит размещают снаружи корпуса масляного фильтра, в области прохождения масла. Стружка притягивается и удерживается, предотвращая её дальнейшее циркулирование по системе.
▪️Уменьшение объема тела тесно связано с уменьшением его момента инерции J = (2/5) × m × r² (для сферы). Закон сохранения момента импульса гласит, что если момент внешних сил, действующих на механическую систему относительно центра оси, равен нулю, то момент импульса системы относительно этого центра с течением времени не изменяется. Если момент импульса L = J ×ω сохраняется, то при уменьшении момента инерции J (сжатие проволочного каркаса), частота вращения будет увеличиваться.
▪️ Рёбра жёсткости (складки) способны сделать бумагу твёрдой — они придают листу прочность, который не выдерживает в форме ровного прямого листа. Это происходит, если лист сложить так, чтобы получились рёбра жёсткости. Например: Сложить лист «гармошкой» — создаёт большое количество рёбер жёсткости. Рёбра жёсткости направляют деформацию «по сложному» пути. Например, если лист согнули под углом 90 градусов, напряжения, которые возникают в материале, распространяются не в продольной плоскости, а в поперечной. В этой плоскости согнуть лист сложнее, так как нужно разорвать межмолекулярные связи.
▪️Гироскопический эффект и прецессия — понятия, связанные с поведением вращающихся объектов, в частности гироскопов. Эти термины объясняют, как ось вращения гироскопа сохраняет направление в пространстве, а при внешнем воздействии ось не меняет направление сразу, а начинает плавно описывать движение. Гироскопический эффект — это способность быстро вращающегося тела удерживать своё положение в пространстве в плоскости своего вращения. Прецессия — это движение оси вращения гироскопа вокруг другой оси. Сила тяжести действует на гироскоп, создавая момент силы, который пытается заставить его опрокинуться. Однако гироскоп прецессирует, и ось его вращения остаётся направленной вверх. Если ось быстро вращающегося гироскопа слегка отклонить от вертикали, то она начнёт прецессировать вокруг вертикального положения, то есть совершать вращательное движение по поверхности конуса.
▪️Когда один шар сталкивается с цепочкой из нескольких одинаковых шаров, налетающий шар обменивается скоростью со вторым шаром, второй — с третьим и так далее. В результате все шары, кроме последнего, будут находиться в покое, а последний шар отскочит ровно с той же самой скоростью, с которой двигался налетающий шар. Это происходит благодаря закону сохранения импульса, согласно которому суммарный импульс системы тел до взаимодействия равен суммарному импульсу этой системы тел после взаимодействия.
#физика #physics #science #видеоуроки #наука #опыты #эксперименты #механика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45🔥16❤9🤯1🤩1🗿1
📚 Учебники по физике (профильный уровень) [5 томов] Автор: Мякишев
💾 Скачать книги
Мякишев Геннадий Яковлевич (20 марта 1926, Москва — 25 декабря 2003, Москва) — советский и российский учёный и педагог, специалист в области общей физики, автор школьных учебников по физике. Работал в МГУ в должности доцента. #подборка_книг #физика #physics #science
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Мякишев Геннадий Яковлевич (20 марта 1926, Москва — 25 декабря 2003, Москва) — советский и российский учёный и педагог, специалист в области общей физики, автор школьных учебников по физике. Работал в МГУ в должности доцента. #подборка_книг #физика #physics #science
💡 Physics.Math.Code // @physics_lib
🔥16👍6❤4⚡1🤩1😍1
📚_Учебники_по_физике_профильный_уровень_5_томов_Автор_Мякишев.zip
27.4 MB
📚 Учебники по физике (профильный уровень) 5 томов Мякишева
📕 Физика. Механика 2010 Мякишев
📗 Физика. Молекулярная физика. Термодинамика 2010 Мякишев Синяков
📙 Физика. Электродинамика 2010 Мякишев
📒 Физика. Колебания и волны 2010 Мякишев Синяков
📘 Физика. Оптика. Квантовая физика 2002 Мякишев Синяков
Здесь все очень подробно. Если вы никуда не торопитесь, получаете удовольствие от процесса размеренного вдумчивого, глубокого и всестороннего погружения в мир физики - это ваш вариант. Если вы захотите все же несколько ускорить процесс, то я порекомендовал бы профильный двухтомник под редакцией А.А.Пинского, возможно, в тандеме с многотомником Мякишева.
Что касается базовых понятий механики и электричества, то они изложены в основном так же, как и в двухтомнике этого автора (кое-в-чем даже хуже). Однако объем материала отличается несравнимо: здесь есть практически все, что нужно школьнику для углубленного изучения физики. #физика #physics #подборка_книг
💡 Physics.Math.Code // @physics_lib
📕 Физика. Механика 2010 Мякишев
📗 Физика. Молекулярная физика. Термодинамика 2010 Мякишев Синяков
📙 Физика. Электродинамика 2010 Мякишев
📒 Физика. Колебания и волны 2010 Мякишев Синяков
📘 Физика. Оптика. Квантовая физика 2002 Мякишев Синяков
Здесь все очень подробно. Если вы никуда не торопитесь, получаете удовольствие от процесса размеренного вдумчивого, глубокого и всестороннего погружения в мир физики - это ваш вариант. Если вы захотите все же несколько ускорить процесс, то я порекомендовал бы профильный двухтомник под редакцией А.А.Пинского, возможно, в тандеме с многотомником Мякишева.
Что касается базовых понятий механики и электричества, то они изложены в основном так же, как и в двухтомнике этого автора (кое-в-чем даже хуже). Однако объем материала отличается несравнимо: здесь есть практически все, что нужно школьнику для углубленного изучения физики. #физика #physics #подборка_книг
💡 Physics.Math.Code // @physics_lib
🔥27❤11👍8⚡2💯1