Physics.Math.Code
140K subscribers
5.15K photos
1.94K videos
5.79K files
4.32K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
加入频道
Media is too big
VIEW IN TELEGRAM
Как сделать сварочный аппарат из карандаша и лезвия

Принцип работы: графитовый стержень на конце плюсового провода становится одним из контактов сети, минусовой контакт цепи закрепляется на свариваемой детали и также является токопроводящим. Когда стержень соприкасается с деталью, цепь замыкается, и на конце электрода возникает электрическая дуга.
Важно: провода лучше использовать покороче, так как с ростом длины растёт и их сопротивление, и мощности батарейки может не хватить на то, чтобы преодолеть это сопротивление. Графитовый стержень в процессе сварки сильно раскаляется, поэтому держать его следует плоскогубцами.

🔥 Сварка под слоем флюса

Мартенсит

⛓️‍💥 Какие только технологии не применяли в СССР

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.

💥 Лазерная сварка с разной формой луча

🔥 Spot-сварка

💥 Импульсная аргонодуговая сварка

💥 Электросварка и плавление электрода 💫

#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥89👍25194🤯4
Электроника и схемотехника

В этом посте предлагаю обсудить вопросы, связанные с электроникой и цифровой схемотехникой. Всё это будет полезно начинающим.

◾️ 1. С чего начать изучать электронику?
◾️ 2. Стоит ли прочитать учебник по физике, раздел "электричество и магнетизм" ?
◾️ 3. Лучше начинать с аналоговых приборов или сразу переходить к изучению цифровой схемотехники?
◾️ 4. Нужны ли хорошие знания электроники человеку, занимающемуся программированием встраиваемых систем?
◾️ 5. Стоит ли пытаться травить платы самостоятельно или лучше заказать?
◾️ 6. Хлористое железо, лимонная кислота или фоторезистор?
◾️ 7. Что нужно спаять первым делом? С чего начинать практику?
◾️ 8. Какой набор инструментов/приборов хватит начинающему радиолюбителю?

#электроника #схемотехника #радиофизика #ночной_чат #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥1413🗿3❤‍🔥2👏2🙈21
Media is too big
VIEW IN TELEGRAM
📻 «Окопное радио» ⚡️ (также известное как «foxhole radio») — самодельный радиоприёмник, который использовали солдаты во время Второй мировой войны для прослушивания местных радиостанций.

Конструкция: в качестве детектора радиоволн применялось лезвие безопасной бритвы, которое действовало как кристалл, а проволокой, английской булавкой или грифелем графитового карандаша служили «кошачьими усами». Окопные рации состояли из проволочной антенны, катушки из проволоки, служившей индуктором, наушников и некоего подобия самодельного диодного детектора для восстановления выпрямления сигнала. Детекторы состояли из электрического контакта между двумя разными проводниками с полупроводниковой плёнкой коррозии между ними. Их делали из различных подручных материалов. Один из распространённых типов состоял из окисленного лезвия бритвы (ржавого или обгоревшего), к которому булавкой прижимался грифель карандаша. Оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия работали как диоды, поэтому солдат водил грифелем карандаша по поверхности, пока в наушниках не начинала звучать радиостанция. Другой конструкцией детектора был угольный стержень батарейки, лежавший на краях двух вертикальных бритвенных лезвий, по образцу «микрофонного» детектора 1879 года Дэвида Эдварда Хьюза.

Принцип работы: оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия действовали как диоды, поэтому солдат водил карандашным грифелем по поверхности до тех пор, пока в наушниках не зазвучит радиостанция.

Особенности: приёмник не имел источника питания и питался от энергии, получаемой от радиостанции.

История: одна из первых газетных статей об окопном радиоприёмнике была опубликована в «Нью-Йорк Таймс» 29 апреля 1944 года. Этот радиоприёмник был собран рядовым Элдоном Фелпсом из Энида, штат Оклахома, который позже утверждал, что именно он изобрёл эту конструкцию. Он был довольно примитивным: лезвие бритвы, воткнутое в кусок дерева, служило детектором, а конец антенного провода — кошачьим усом. Ему удавалось принимать передачи из Рима и Неаполя. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм

📗 Первая книга радиолюбителя [1961] Костыков Ю. В., Ермолаев Л. Н.

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12134🔥29🤷‍♂3👏3❤‍🔥22🤩2
👨🏻‍💻 Интересная история из нашего чата ( @math_code ), которая может послужить темой для обсуждения нескольких важных вопросов.

▪️ Нужно ли переживать по поводу возраста, в котором вы начинаете изучать Computer Science и программирование в частности? Или силы и знания приходят во время процесса, во время решения и умственной активности, и это не зависит от возраста?

▪️ Нужно ли впадать в депрессию, если что-то долго не получается? Сравнивать себя с другими? Если все вокруг лучше, то неужели нужно бросать это дело? Или же наоборот нужно стремиться быть именно в том коллективе, где ты самый слабый (временно), чтобы был рост?

▪️ Что делать, если не получается решить задачу? Какой алгоритм можно предложить, чтобы научиться вытаскивать себя из таких ситуаций?

▪️ Если вы опытный разработчик, дайте советы начинающим. Именно те советы, которых вам так сильно не хватало на старте вашего обучения. Расскажите про свой опыт, свою историю успеха и неудач. Расскажи про ваш возраст.

📚 Подборка книг по дискретной математике, информатике, алгоритмам

📚 Искусство программирования / The Art of Computer Programming

📚 3 книги по программированию [Никлаус Вирт]

🖥 Какая самая страшная структура данных?

#IT #алгоритмы #computer_science #программирование #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
36👍25🔥8👻32❤‍🔥1🙏1
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔45🙈21🔥13😱10👍9🗿65🌚5🤯43👏3
This media is not supported in your browser
VIEW IN TELEGRAM
🟢 Инерция: почему она не работает в данном опыте? Почему шарик в воде отклоняется в другую сторону?

Попробуйте подумать самостоятельно и написать свой ответ в комментариях. Обсуждаем задачу здесь... ✍🏻

#физика #опыты #эксперименты #наука #science #physics #механика #гидродинамика #видеоуроки #гидростатика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍38125🔥3🤯3🤔1
📚 Как решать задачи [20+ книг]

💾 Скачать книги

🔵 Физика – это основа всего естествознания, она необходима для изучения химии, биологии, географии, геологии, астрономии. В свою очередь для понимания самой физики большие познания в других естественных дисциплинах не требуются, однако нужны знания и навыки из такой науки, как математика. Считается, что физика на сегодня является самой развитой и формализованной (то есть описываемой с помощью математических инструментов) естественной наукой.

💡 Сделаем подборку книг о том как научиться решать физико-математические задачи? В комментариях обязательно напишите какие книги по физике ваши любимые!

#подборка_книг #физика #техника #physics #задачи #наука #science

💡 Physics.Math.Code // @physics_lib
43👍25🔥13🤩3😍1
📚 Как решать задачи [20+ книг].7z
147.2 MB
📚 Как решать задачи [20+ книг]

📗 Как научиться решать задачи. Книга для учащихся старших классов средней школы [1989] Фридман
📕 Как решают нестандартные задачи [2008] Канель-Белов, Ковальджи
📘 Учимся решать задачи по геометрии [1996] Полонский, Рабинович, Якир
📙 Как решать задачу [1961] Пойа Дж.
📒 Как решать задачи по физике [1967] Сперанский Н.М
📗 Как решать задачи по теоретической механике [2008] Антонов
📔 Как решать задачи по физике [1998] Гринченко
📓 Траблшутинг: Как решать нерешаемые задачи, посмотрев на проблему с другой стороны [2018] Фаер
📕 Как решать задачи по математике на вступительных экзаменах [1990] Мельников, Сергеев
📘 Математика и правдоподобные рассуждения [1953] Пойа Дж.
📙 Как решать задачи по физике, и почему их надо решать [2009] Варгин
📒Учитесь решать задачи по физике [1997] Ефашкин, Романовская, Тарасова
📗 Экспериментальные физические задачи на смекалку [1974] Ланге
📔 Физические парадоксы, софизмы и занимательные задачи [1967] Ланге
📓 Сто задач по физике

и
другие... #подборка_книг #физика #математика #геометрия #наука #physics #math #science

💡 Physics.Math.Code // @physics_lib
1👍6420❤‍🔥9🔥4😍3🤯2🤩2👻2😢1
☕️ Утренняя задачка по физике для разминки наших инженеров

Попробуйте подумать самостоятельно и написать ваш вариант ответа в комментариях.

#задачи #механика #физика #physics #science #наука #разбор_задач

💡 Physics.Math.Code // @physics_lib
👍48🔥1712🤯5🤔3😱1
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.

Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.

Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.

Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
27👍21🔥13🤯2👻2