📚 HÜTTE: Справочник для инженеров, техников и студентов
💾 Скачать книги
Изданием справочника HÜTTE преследуется цель дать книгу, которая содержала бы в ясном изложении не только формулы, таблицы и выводы из специальных курсов, необходимые при выполнении учебных работ по проектированию и расчету, но которая служила бы, главным образом, удобным и надежным справочником в практической деятельности инженеру.
Настоящее 15-е русское издание является переводом с 26-го немецкого издания, дополненное сведениями об отечественных стандартах и материалах. Многие разделы полностью написаны заново.
#высшая_математика #электротехника #двигатели #математика #физика #теплота #детали_машин #сопромат
💾 Скачать книги
Изданием справочника HÜTTE преследуется цель дать книгу, которая содержала бы в ясном изложении не только формулы, таблицы и выводы из специальных курсов, необходимые при выполнении учебных работ по проектированию и расчету, но которая служила бы, главным образом, удобным и надежным справочником в практической деятельности инженеру.
Настоящее 15-е русское издание является переводом с 26-го немецкого издания, дополненное сведениями об отечественных стандартах и материалах. Многие разделы полностью написаны заново.
#высшая_математика #электротехника #двигатели #математика #физика #теплота #детали_машин #сопромат
👍79🔥13❤🔥4❤1😁1
This media is not supported in your browser
VIEW IN TELEGRAM
💧Удар молотка по перекалённому стеклу
Капли принца Руперта (также известные как голландские или батавские слезы)-это закаленные стеклянные бусины, созданные путем капания расплавленного стекла в холодную воду, которая заставляет его затвердевать в каплю в форме головастика с длинным тонким хвостом.
Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом капля обладает исключительной прочностью: по её «голове» можно бить молотком, и она не разобьётся. Но если надломить хвостик, капля мгновенно разлетается на мелкие осколки. Опыт необходимо проводить в защитных очках, так как «взрывающееся» стекло очень опасно.
На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с). Если опыт проводится в темноте, заметна также триболюминесценция.
В поляризованном свете видно, что капля не изотропна, а испытывает сильные внутренние напряжения, что и вызывает такие странные свойства.
#физика #gif #наука #physics #сопромат #механика
Капли принца Руперта (также известные как голландские или батавские слезы)-это закаленные стеклянные бусины, созданные путем капания расплавленного стекла в холодную воду, которая заставляет его затвердевать в каплю в форме головастика с длинным тонким хвостом.
Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом капля обладает исключительной прочностью: по её «голове» можно бить молотком, и она не разобьётся. Но если надломить хвостик, капля мгновенно разлетается на мелкие осколки. Опыт необходимо проводить в защитных очках, так как «взрывающееся» стекло очень опасно.
На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с). Если опыт проводится в темноте, заметна также триболюминесценция.
В поляризованном свете видно, что капля не изотропна, а испытывает сильные внутренние напряжения, что и вызывает такие странные свойства.
#физика #gif #наука #physics #сопромат #механика
👍146🔥34🤯5❤2⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
💧 Капля Руперта против пули 38 калибра
Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом капля обладает исключительной прочностью: по её «голове» можно бить молотком, и она не разобьётся. Но если надломить хвостик, капля мгновенно разлетается на мелкие осколки. Опыт необходимо проводить в защитных очках, так как «взрывающееся» стекло очень опасно.
На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с). Если опыт проводится в темноте, заметна также триболюминесценция.
🔨 Удар молотка по перекалённому стеклу
#физика #gif #наука #physics #сопромат #механика
Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом капля обладает исключительной прочностью: по её «голове» можно бить молотком, и она не разобьётся. Но если надломить хвостик, капля мгновенно разлетается на мелкие осколки. Опыт необходимо проводить в защитных очках, так как «взрывающееся» стекло очень опасно.
На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с). Если опыт проводится в темноте, заметна также триболюминесценция.
🔨 Удар молотка по перекалённому стеклу
#физика #gif #наука #physics #сопромат #механика
👍179🔥40🤯29😁4❤3⚡2
Пластическим деформированием роликовыми или шариковыми обкатками и раскатками обрабатывают детали из различных пластичных материалов и сталей твердостью не более HRC 35—40. Процесс протекает без снятия стружки за счёт разглаживания шероховатости, полученной после точения. Реализуется за счёт трения качения, что отличает его от выглаживания, которое реализуется за счёт трения скольжения.
Обкатывание поверхности сопровождается уменьшением её размера на величину остаточной деформации раскатанное отверстие имеет соответственно больший размер. Под упрочняющую обработку поверхность детали подготавливают таким методом как чистовое точение. Шероховатость должна находиться в пределах 5—6 классов чистоты. При этом необходимо учитывать, что диаметр поверхности в процессе упрочняющей обработки может изменяться до 0,02— 0,03 мм. Поэтому наружные поверхности детали следует выполнять по наибольшему предельному размеру, а внутренние — по наименьшему. #механика #сопромат #материаловедение #physics #физика #science #научные_фильмы #видеоуроки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍87❤🔥9🔥8❤2😱2😎1
🔩 Как получить квадратное отверстие на токарном станке? 🧐
На первых секундах ролика кажется, что производится сверление шестигранным сверлом металлической детали. Однако на деле никакого сверления нет — данная технология называется ротационной прошивкой. Она позволяет делать отверстия любой формы, треугольной, квадратной, шестигранной и т. д. Однако перед самой прошивкой в изделии должно быть просверлено круглое отверстие соответствующего диаметра. Обратное справедливо и при создании наружных шлицевых соединений, где предварительно создается стержень круглой формы необходимого диаметра. Работает это так: прошивную головку устанавливают в револьверную головку либо в пиноль задней бабки токарного станка, а прошиваемую деталь закрепляют в токарном патроне. Затем детали стыкуются, и происходит прошивка — головка вращательно-колебательными движениями с отклонением фигурного сверла от 0,5 до 1,5 градуса проникает внутрь прошиваемой детали. Сверло срезает своими гранями материал внутри отверстия прошиваемой детали (или снаружи, если это шлицевой стержень), и получается соответствующее фигурное отверстие/шлиц. #механика #сопромат #материаловедение #physics #физика #science #научные_фильмы #видеоуроки
💡 Physics.Math.Code // @physics_lib
На первых секундах ролика кажется, что производится сверление шестигранным сверлом металлической детали. Однако на деле никакого сверления нет — данная технология называется ротационной прошивкой. Она позволяет делать отверстия любой формы, треугольной, квадратной, шестигранной и т. д. Однако перед самой прошивкой в изделии должно быть просверлено круглое отверстие соответствующего диаметра. Обратное справедливо и при создании наружных шлицевых соединений, где предварительно создается стержень круглой формы необходимого диаметра. Работает это так: прошивную головку устанавливают в револьверную головку либо в пиноль задней бабки токарного станка, а прошиваемую деталь закрепляют в токарном патроне. Затем детали стыкуются, и происходит прошивка — головка вращательно-колебательными движениями с отклонением фигурного сверла от 0,5 до 1,5 градуса проникает внутрь прошиваемой детали. Сверло срезает своими гранями материал внутри отверстия прошиваемой детали (или снаружи, если это шлицевой стержень), и получается соответствующее фигурное отверстие/шлиц. #механика #сопромат #материаловедение #physics #физика #science #научные_фильмы #видеоуроки
💡 Physics.Math.Code // @physics_lib
👍125🔥25😍6❤3👏2😱1🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
💧 Батавские слёзки или капли принца Руперта (англ. Prince Rupert's drops) — застывшие капли закалённого стекла, обладающие чрезвычайно высокими внутренними механическими напряжениями. Скорее всего, подобные стеклянные капли были известны стеклодувам с незапамятных времён, однако внимание учёных они привлекли в середине XVII века.
Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, а начнёт застывать, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом «голова» капли обладает исключительной прочностью, по ней можно бить металлическим молотком в полную силу, и в зависимости от объёма она выдерживает усилие гидравлического пресса до 30 тонн, оставляя вмятину на стали.
Но стоит надломить или просто задеть «хвост» капли, и она мгновенно разлетается на мелкие осколки, по направлению от «хвоста» к «голове». По этой причине надламывание желательно проводить под слоем жидкости, и инструментом типа щипцов, так как при этом опыте помимо опасности от самого стекла происходит гидроудар из-за очень резкого расширения поля осколков. На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с).
Если опыт проводится в темноте, заметна также триболюминесценция. В поляризованном свете видно, что капля не изотропна, а испытывает сильные внутренние напряжения, что и вызывает такие свойства.
#физика #сопромат #physics #mechanics #механика #опыты #кинематика #эксперименты #видеоуроки
💡 Physics.Math.Code // @physics_lib
Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, а начнёт застывать, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом «голова» капли обладает исключительной прочностью, по ней можно бить металлическим молотком в полную силу, и в зависимости от объёма она выдерживает усилие гидравлического пресса до 30 тонн, оставляя вмятину на стали.
Но стоит надломить или просто задеть «хвост» капли, и она мгновенно разлетается на мелкие осколки, по направлению от «хвоста» к «голове». По этой причине надламывание желательно проводить под слоем жидкости, и инструментом типа щипцов, так как при этом опыте помимо опасности от самого стекла происходит гидроудар из-за очень резкого расширения поля осколков. На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с).
Если опыт проводится в темноте, заметна также триболюминесценция. В поляризованном свете видно, что капля не изотропна, а испытывает сильные внутренние напряжения, что и вызывает такие свойства.
#физика #сопромат #physics #mechanics #механика #опыты #кинематика #эксперименты #видеоуроки
💡 Physics.Math.Code // @physics_lib
👍122🔥32❤17⚡2😱2😨2
Media is too big
VIEW IN TELEGRAM
⚫️ Механическая задача для наших подписчиков 💡
Допустим, у нас имеется многослойный стеклянный шар, где каждый слой стекла имеет свой собственный цвет. Шар бросают с очень большой высоты на бесконечно твердую поверхность. В результате чего шар разлетается на осколки. Осколки какого цвета отлетят на максимальное расстояние? Если шар заменить на полушарие и бросить его вниз выпуклой стороной, то что изменится? #механика #задачи #сопромат #разбор_задач #физика #physics
💡 Physics.Math.Code // @physics_lib
Допустим, у нас имеется многослойный стеклянный шар, где каждый слой стекла имеет свой собственный цвет. Шар бросают с очень большой высоты на бесконечно твердую поверхность. В результате чего шар разлетается на осколки. Осколки какого цвета отлетят на максимальное расстояние? Если шар заменить на полушарие и бросить его вниз выпуклой стороной, то что изменится? #механика #задачи #сопромат #разбор_задач #физика #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🤯30👍23🔥10❤7❤🔥2🗿2
This media is not supported in your browser
VIEW IN TELEGRAM
💧 Батавские слёзки или капли принца Руперта (англ. Prince Rupert's drops) — застывшие капли закалённого стекла, обладающие чрезвычайно высокими внутренними механическими напряжениями. Скорее всего, подобные стеклянные капли были известны стеклодувам с незапамятных времён, однако внимание учёных они привлекли в середине XVII века.
Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, а начнёт застывать, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом «голова» капли обладает исключительной прочностью, по ней можно бить металлическим молотком в полную силу, и в зависимости от объёма она выдерживает усилие гидравлического пресса до 30 тонн, оставляя вмятину на стали.
Но стоит надломить или просто задеть «хвост» капли, и она мгновенно разлетается на мелкие осколки, по направлению от «хвоста» к «голове». По этой причине надламывание желательно проводить под слоем жидкости, и инструментом типа щипцов, так как при этом опыте помимо опасности от самого стекла происходит гидроудар из-за очень резкого расширения поля осколков. На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с).
Если опыт проводится в темноте, заметна также триболюминесценция. В поляризованном свете видно, что капля не изотропна, а испытывает сильные внутренние напряжения, что и вызывает такие свойства.
#физика #сопромат #physics #mechanics #механика #опыты #кинематика #эксперименты #видеоуроки
💡 Physics.Math.Code // @physics_lib
Если капнуть расплавленным стеклом в холодную воду и стекло после этого не лопнет, а начнёт застывать, получается капля в форме головастика, с длинным изогнутым «хвостом». При этом «голова» капли обладает исключительной прочностью, по ней можно бить металлическим молотком в полную силу, и в зависимости от объёма она выдерживает усилие гидравлического пресса до 30 тонн, оставляя вмятину на стали.
Но стоит надломить или просто задеть «хвост» капли, и она мгновенно разлетается на мелкие осколки, по направлению от «хвоста» к «голове». По этой причине надламывание желательно проводить под слоем жидкости, и инструментом типа щипцов, так как при этом опыте помимо опасности от самого стекла происходит гидроудар из-за очень резкого расширения поля осколков. На кадрах, зарегистрированных с помощью высокоскоростной съёмки, видно, что фронт «взрыва» движется по капле с большой скоростью: 1,2 км/с (для сравнения: скорость звука в воздухе 0,34 км/с, скорость детонации взрывчатки — 2—9 км/с).
Если опыт проводится в темноте, заметна также триболюминесценция. В поляризованном свете видно, что капля не изотропна, а испытывает сильные внутренние напряжения, что и вызывает такие свойства.
#физика #сопромат #physics #mechanics #механика #опыты #кинематика #эксперименты #видеоуроки
💡 Physics.Math.Code // @physics_lib
👍125🔥53❤14🤯9❤🔥3
🪙 Вольфрам (химический символ — W, от лат. Wolframium) — химический элемент 6-й группы шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 74. При нормальных условиях вольфрам — твёрдый, тяжёлый блестящий металл серебристо-серого цвета. Обладает немного более высокой плотностью, чем металлический уран.
Вольфрам — самый тугоплавкий из металлов. Относится к переходным металлам. Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения. Вольфрам имеет твёрдость по Моосу 7,5 и является вторым после хрома (твёрдость по Моосу 8,5) по твёрдости среди чистых металлов. Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама при нормальных условиях составляет 19,25 г/см³. Обладает парамагнитными свойствами. Твёрдость по Бринеллю 488 кг/мм².
Вольфрам является одним из наиболее тяжёлых, твёрдых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддаётся ковке и может быть вытянут в тонкую нить. Металл обладает высокой устойчивостью в вакууме. Коэффициент сжимаемости наименьший среди всех металлов (соответственно, объёмный модуль упругости наибольший среди металлов). Вольфрам имеет высокую коррозионную стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в оксид вольфрама(VI). Однако восстановленный тонкодисперсный порошок вольфрама пирофорен. Вольфрам в ряду напряжений стоит сразу после водорода, и в соляной, разбавленной серной и плавиковой кислотах почти нерастворим. В азотной кислоте и царской водке окисляется с поверхности. Растворяется в перекиси водорода.
До середины XIX века вольфрам применялся только в виде соединений, например в качестве красителей. В металлическом состоянии вольфрам был впервые получен братьями Элюар в Испании в 1783 году. В 1868 году Роберт Мюшет предлагает применять вольфрамовую сталь для изготовления металлорежущего инструмента.
#физика #сопромат #physics #термодинамика #механика #опыты #химия #эксперименты #видеоуроки
💡 Physics.Math.Code // @physics_lib
Вольфрам — самый тугоплавкий из металлов. Относится к переходным металлам. Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения. Вольфрам имеет твёрдость по Моосу 7,5 и является вторым после хрома (твёрдость по Моосу 8,5) по твёрдости среди чистых металлов. Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама при нормальных условиях составляет 19,25 г/см³. Обладает парамагнитными свойствами. Твёрдость по Бринеллю 488 кг/мм².
Вольфрам является одним из наиболее тяжёлых, твёрдых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддаётся ковке и может быть вытянут в тонкую нить. Металл обладает высокой устойчивостью в вакууме. Коэффициент сжимаемости наименьший среди всех металлов (соответственно, объёмный модуль упругости наибольший среди металлов). Вольфрам имеет высокую коррозионную стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в оксид вольфрама(VI). Однако восстановленный тонкодисперсный порошок вольфрама пирофорен. Вольфрам в ряду напряжений стоит сразу после водорода, и в соляной, разбавленной серной и плавиковой кислотах почти нерастворим. В азотной кислоте и царской водке окисляется с поверхности. Растворяется в перекиси водорода.
До середины XIX века вольфрам применялся только в виде соединений, например в качестве красителей. В металлическом состоянии вольфрам был впервые получен братьями Элюар в Испании в 1783 году. В 1868 году Роберт Мюшет предлагает применять вольфрамовую сталь для изготовления металлорежущего инструмента.
#физика #сопромат #physics #термодинамика #механика #опыты #химия #эксперименты #видеоуроки
💡 Physics.Math.Code // @physics_lib
👍72⚡8❤6🤓6🤝6🔥2🆒2👨💻1🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
⛓️ Тенсегрити (от англ. tensional integrity — «соединение путём натяжения») — принцип построения конструкций из стержней и тросов, в которых стержни работают на сжатие, а тросы — на растяжение.
В основе тенсегрити лежит идея о том, что структура может быть стабильной и прочной, несмотря на то, что её элементы не соприкасаются друг с другом. Вместо этого они соединены таким образом, что каждый элемент работает на растяжение или сжатие, создавая напряжение и поддерживая всю конструкцию. Это позволяет создавать лёгкие и прочные конструкции, которые могут адаптироваться к изменениям окружающей среды. Понятие тенсегрити используется также при объяснении процессов в биологических исследованиях (особенно в биологии клетки) и некоторых других современных отраслях знания, например, в исследованиях строения текстильных тканей, дизайне, исследованиях социальных структур, ансамблевой музыке и геодезии.
Тенсегрити или плавающее сжатие — это конструктивный принцип, основанный на системе изолированных компонентов, находящихся под сжатием внутри сети непрерывного натяжения и расположенных таким образом, что сжатые элементы (обычно стержни или распорки) не касаются друг друга, в то время как предварительно напряжённые элементы (обычно тросы или сухожилия) разграничивают систему в пространстве.
Тенсегрити-структуры встречаются как в природе, так и в созданных человеком объектах: в человеческом теле кости находятся в состоянии сжатия, а соединительные ткани — в состоянии натяжения, и те же принципы применяются в мебели, архитектурном дизайне и не только.
#механика #динамика #физика #статика #технологии #physics #стереометрия #теоретическая_механика #сопромат #видеоуроки #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
В основе тенсегрити лежит идея о том, что структура может быть стабильной и прочной, несмотря на то, что её элементы не соприкасаются друг с другом. Вместо этого они соединены таким образом, что каждый элемент работает на растяжение или сжатие, создавая напряжение и поддерживая всю конструкцию. Это позволяет создавать лёгкие и прочные конструкции, которые могут адаптироваться к изменениям окружающей среды. Понятие тенсегрити используется также при объяснении процессов в биологических исследованиях (особенно в биологии клетки) и некоторых других современных отраслях знания, например, в исследованиях строения текстильных тканей, дизайне, исследованиях социальных структур, ансамблевой музыке и геодезии.
Тенсегрити или плавающее сжатие — это конструктивный принцип, основанный на системе изолированных компонентов, находящихся под сжатием внутри сети непрерывного натяжения и расположенных таким образом, что сжатые элементы (обычно стержни или распорки) не касаются друг друга, в то время как предварительно напряжённые элементы (обычно тросы или сухожилия) разграничивают систему в пространстве.
Тенсегрити-структуры встречаются как в природе, так и в созданных человеком объектах: в человеческом теле кости находятся в состоянии сжатия, а соединительные ткани — в состоянии натяжения, и те же принципы применяются в мебели, архитектурном дизайне и не только.
#механика #динамика #физика #статика #технологии #physics #стереометрия #теоретическая_механика #сопромат #видеоуроки #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
👍81🔥20❤8❤🔥5🗿5🆒5😱1
This media is not supported in your browser
VIEW IN TELEGRAM
Фреза (от фр. fraise) — инструмент с одним или несколькими режущими лезвиями (зубьями) для фрезерования на станке.
Виды фрез (шарошек) по геометрии (исполнению) бывают — цилиндрические, торцевые, червячные, концевые, конические и другие. Виды фрез по обрабатываемому материалу — дерево, сталь, чугун, нержавеющая сталь, закалённая сталь, медь, алюминий, графит и иное. Материал режущей части — быстрорежущая сталь, твёрдый сплав, минералокерамика, металлокерамика или алмаз, массив кардной проволоки. В зависимости от конструкции и типа зубьев фрезы бывают цельные (полностью из одного материала), сварные (хвостовик и режущая часть состоит из различного материала, соединённые сваркой), напайные (с напаянными режущими элементами), сборные (из различного материала, но соединённые стандартными крепёжными элементами — винтами, болтами, гайками, клиньями). Отдельно выделяют фрезерные головки — фрезы со сменными пластинами из твердого сплава и быстрорежущей стали. Также такие фрезы часто называют механическими, а головку без ножей — корпусом. На рисунке представлена торцовая фреза с механическим креплением твёрдосплавных пластин.
▪️ Фрезы из быстрорежущей стали (HSS) являются наименее дорогими и самыми недолговечными. Фрезы из кобальтсодержащей быстрорежущей стали обычно могут работать на 10% быстрее, чем из обычной быстрорежущей стали. Инструменты из цементированного карбида дороже, чем из стали, но служат дольше и могут работать намного быстрее, поэтому оказываются более экономичными в долгосрочной перспективе. Инструменты из HSS идеально подходят для многих применений.
▪️ Более крупные инструменты могут удалять материал быстрее, чем мелкие, поэтому обычно выбирается максимально возможная фреза, которая подойдет для работы. При фрезеровании внутреннего контура или вогнутых внешних контуров диаметр ограничивается размером внутренних кривых. Радиус фрезы должен быть меньше или равен радиусу наименьшей дуги.
▪️ Больше канавок позволяет увеличить скорость подачи, поскольку на одну канавку снимается меньше материала. Но поскольку диаметр сердцевины увеличивается, остается меньше места для стружки, поэтому необходимо выбрать баланс.
▪️ Покрытия, такие как нитрид титана , также увеличивают первоначальную стоимость, но уменьшают износ и увеличивают срок службы инструмента. Покрытие из нитрида титана и алюминия (TiAlN) уменьшает прилипание алюминия к инструменту, уменьшая, а иногда и устраняя необходимость в смазке.
▪️Большие углы наклона винтовой линии обычно лучше всего подходят для мягких металлов, а малые углы наклона винтовой линии — для твердых или прочных металлов. #механика #инженерия #техника #материаловедение #сопромат
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍138❤19🔥12⚡5🤝4🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
🔩 Метод ферм в строительстве заключается в использовании металлических ферм для перекрытия значительных пролётов, как правило, от 18 метров. В отличие от сплошных металлических балок, ферменные конструкции более экономичны с точки зрения расхода металла, но при этом имеют большую высоту.
Фермы состоят из нескольких элементов:
▪️ Верхний пояс (работает на сжатие).
▪️ Нижний пояс (работает на растяжение).
▪️ Раскосы (сопротивление сдвигу).
Фермы бывают плоскими (все стержни лежат в одной плоскости) и пространственными. Плоские фермы воспринимают нагрузку, приложенную только в их плоскости, и нуждаются в закреплении их связями. Пространственные фермы образуют жёсткий пространственный брус, воспринимающий нагрузку в любом направлении.
Расчёт фермы начинается со сбора нагрузок, которые конструкция может испытывать в процессе эксплуатации. Основная задача расчёта фермы — определение усилий в её элементах. По определённым усилиям производят подбор сечений элементов фермы, а также расчёт узловых прикреплений элементов (сварных швов, болтов и т.д.).
При большом количестве узлов и элементов трудоёмкость аналитических методов резко возрастает, поэтому в современном проектировании используются специализированные программные комплексы, основанные на расчёте конструкций методом конечных элементов. #физика #сопромат #меахника #опыты #эксперименты #physics #видеоуроки #строительство #science
💡 Physics.Math.Code // @physics_lib
Фермы состоят из нескольких элементов:
▪️ Верхний пояс (работает на сжатие).
▪️ Нижний пояс (работает на растяжение).
▪️ Раскосы (сопротивление сдвигу).
Фермы бывают плоскими (все стержни лежат в одной плоскости) и пространственными. Плоские фермы воспринимают нагрузку, приложенную только в их плоскости, и нуждаются в закреплении их связями. Пространственные фермы образуют жёсткий пространственный брус, воспринимающий нагрузку в любом направлении.
Расчёт фермы начинается со сбора нагрузок, которые конструкция может испытывать в процессе эксплуатации. Основная задача расчёта фермы — определение усилий в её элементах. По определённым усилиям производят подбор сечений элементов фермы, а также расчёт узловых прикреплений элементов (сварных швов, болтов и т.д.).
При большом количестве узлов и элементов трудоёмкость аналитических методов резко возрастает, поэтому в современном проектировании используются специализированные программные комплексы, основанные на расчёте конструкций методом конечных элементов. #физика #сопромат #меахника #опыты #эксперименты #physics #видеоуроки #строительство #science
💡 Physics.Math.Code // @physics_lib
👍144🔥59❤10❤🔥7😱5🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
⛓️💥 Какие только технологии не применяли в СССР
Холодная сварка — сварка давлением при значительной пластической деформации зоны соединения без нагрева свариваемых частей внешними источниками тепла.
Первый известный случай холодной сварки давлением датируется 700 г. до н. э. (поздний бронзовый век, Британия). Используемым металлом было золото, а сваренные данным способом золотые шкатулки были найдены во время археологических раскопок.
Первым научным экспериментом с использованием холодной сварки является опыт, продемонстрированный 29 апреля 1724 года Ж. И. Дезагюлье в Королевском научном обществе (Англия). Два свинцовых шара (первый из которых весил 1 фунт, а второй — 2 фунта), с которых были срезаны шаровые сегменты по 3/4 дюйма , были руками спрессованы с одновременным скручиванием. Оказалось, что в результате они соединились. Шары пристали друг к другу так прочно, что поддерживаемый рукой верхний однофунтовый шар отсоединялся от нижнего лишь при нагрузке более 16 фунтов. При осмотре соприкасающихся поверхностей оказалось, что фактическая площадь их сварного соединения не превышала площади круга диаметром в 1/10 дюйма.
На практике этот метод сварки был использован во время Второй мировой войны в Германии для соединения деталей из алюминиевых сплавов при изготовлении авиационных двигателей. В СССР пионерами внедрения холодной сварки были К. К. Хренов (Киев, Институт сварки им. О. Е. Патона) и И. Б. Баранов (Ленинград, завод «Электрик»), а затем ВНИИЭСО (ныне Институт сварки России).
Холодная сварка является сложным физико-химическим процессом, протекающим только при интенсивной пластической деформации в зоне соединения. Роль деформации при холодной сварке заключается в разрушении оксидных пленок, вытеснении их из зоны соединения и сближении свариваемых поверхностей на межатомное расстояние. Необходимое для сварки давление составляет, например, для изделий из алюминия — 300...600 МПа. #физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука
💡 Physics.Math.Code // @physics_lib
Холодная сварка — сварка давлением при значительной пластической деформации зоны соединения без нагрева свариваемых частей внешними источниками тепла.
Первый известный случай холодной сварки давлением датируется 700 г. до н. э. (поздний бронзовый век, Британия). Используемым металлом было золото, а сваренные данным способом золотые шкатулки были найдены во время археологических раскопок.
Первым научным экспериментом с использованием холодной сварки является опыт, продемонстрированный 29 апреля 1724 года Ж. И. Дезагюлье в Королевском научном обществе (Англия). Два свинцовых шара (первый из которых весил 1 фунт, а второй — 2 фунта), с которых были срезаны шаровые сегменты по 3/4 дюйма , были руками спрессованы с одновременным скручиванием. Оказалось, что в результате они соединились. Шары пристали друг к другу так прочно, что поддерживаемый рукой верхний однофунтовый шар отсоединялся от нижнего лишь при нагрузке более 16 фунтов. При осмотре соприкасающихся поверхностей оказалось, что фактическая площадь их сварного соединения не превышала площади круга диаметром в 1/10 дюйма.
На практике этот метод сварки был использован во время Второй мировой войны в Германии для соединения деталей из алюминиевых сплавов при изготовлении авиационных двигателей. В СССР пионерами внедрения холодной сварки были К. К. Хренов (Киев, Институт сварки им. О. Е. Патона) и И. Б. Баранов (Ленинград, завод «Электрик»), а затем ВНИИЭСО (ныне Институт сварки России).
Холодная сварка является сложным физико-химическим процессом, протекающим только при интенсивной пластической деформации в зоне соединения. Роль деформации при холодной сварке заключается в разрушении оксидных пленок, вытеснении их из зоны соединения и сближении свариваемых поверхностей на межатомное расстояние. Необходимое для сварки давление составляет, например, для изделий из алюминия — 300...600 МПа. #физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука
💡 Physics.Math.Code // @physics_lib
🔥94👍60❤23⚡4🤯4✍1🤨1