Physics.Math.Code
140K subscribers
5.15K photos
1.95K videos
5.79K files
4.33K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
加入频道
Лекция 1. Величие и простота законов Ньютона
Лекция 2. Мир бесконечного движения
Лекция 3. Красота вращающегося мира (гироскопы и волчки)
Лекция 4. Размышления о силе пламени (тепловые машины)
Лекция 5. Отчего люди не летают (гидродинамика и аэродинамика)
Лекция 6. Испарение и кипение, поверхностные явления, плавление и кристаллизация
Лекция 7. Физика и музыка (колебания и волны, акустика)
Лекция 8. Мир искривленных лучей (геометрическая оптика)
Лекция 9. Все цвета радуги (явления интерференции и дифракции)
Лекция 10. Мир лазеров и поляризованного света

Смотреть: https://vk.com/wall-51126445_41396

#физика #механика #термодинамика #оптика #колебания #акустика #лазер
🔦 «Оптика» VS «Лазер». Преимущество и недостатки оптических систем 🖱

Внутри оба варианта отличаются мало: в недрах мыши установлена микрокамера, сфокусированная на конкретное расстояние. Она снимает поверхность под собой множество раз в секунду, специальный чип высчитывает разницу между двумя соседними кадрами и передает значения о смещении в систему, а там уже происходит магия движения курсора.

Размер светочувствительного элемента небольшой, буквально от нескольких пикселов (7х7 точек) до нескольких десятков (у лучших моделей — 40х40 с рабочей областью 36х36), поэтому у дорогих сенсоров лучше с обработкой резких движений и углов: смещение лучше считается на большой картинке, чем на маленькой.

Оптические мыши считывают информацию с самого верхнего слоя рабочей поверхности: бугорков, образованных переплетениями нитей ковра, микронеровностей бумаги или волокон древесины и т.п. Вывод напрашивается сам собой — на гладких поверхностях сенсор бессилен. Глянцевая бумага, стекло, отполированный лист металла отразят слишком мало полезной информации, чтобы сенсор мог что-либо определить.

Лазерная подсветка выявляет все неоднородности поверхности, даже самые маленькие, поэтому мыши с лазерными сенсорами работают даже на стеклянных столиках (если те, конечно, не выполнены из ИК или УФ-прозрачных марок стекла). Однако повышенная чувствительность может сыграть с пользователем злую шутку. Чем медленнее перемещается мышь, тем больше лишних данных попадает в сенсор и тем грубее его работа. Современные мышки достаточно хорошо фильтруют данные, но до гладкости работы оптики лазер все еще не дорос. Для решения этой проблемы некоторые производители ставят сразу два сенсора разных типов или же лазеры с двумя разными длинами волн, а мозгами мышки объединяют результаты их работы.

По факту все они оптические, разница в способе реализации подсветки. То, что называют оптической мышью, полагается на красный или инфракрасный светодиод, лазерной — на ИК или УФ-лазер соответственно. Грамотнее было бы называть эти направления «оптическая лазерная» и «оптическая светодиодная», но тут уже ничего не поделаешь — «копир» все равно будут называть «ксероксом» :)

#техника #оптика #физика #лазер
👍106🤔75🔥4❤‍🔥2
📡 Китайский инженер изобрел ПВО от комаров 🦟

Изобретатель модифицировал радар от электрокара для обнаружения насекомых и прикрутил к нему мощную лазерную указку. Всех жертв он собирает в специальную «тетрадь смерти».

Лазерное излучение характеризуется чрезвычайно высокой степенью монохромности, когерентности, направленности и яркости. К этим свойствам можно добавить генерацию световых импульсов малой длительности. Это свойство, возможно, менее фундаментально, но оно играет очень важную роль. Лазерное излучение обладает высокой энергией, которая способна вызвать в тканях организма тепловые, фотохимические, ударно-акустические и другие эффекты. Высокая мощность лазерного излучения может привести к поражению ткани за короткий промежуток времени. Плотность энергии излучения достигает высоких, поражающих значений посредством малого размера пучка. Пучок, распространяясь изменяется незначительно в силу небольшой расходимости, соответственно, присутствует риск поражения даже на большом расстоянии. Причём, в случае распространения невидимого излучения, наличие опасности может быть неочевидно, и даже видимое излучение будет заметно в воздухе лишь при наличии взвешенных частиц. #лазер #техника #физика #physics #оптика #факты

💡 Physics.Math.Code
👍183🔥55🫡198👏65👻4🤓3🤔2❤‍🔥1🤯1
💥 Лазерная резка — технология резки и раскроя материалов, использующая лазер высокой мощности и обычно применяемая на промышленных производственных линиях. Сфокусированный лазерный луч, обычно управляемый компьютером, обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые материалы независимо от их теплофизических свойств. В процессе резки, под воздействием лазерного луча материал разрезаемого участка плавится, возгорается, испаряется или выдувается струей газа. При этом можно получить узкие резы с минимальной зоной термического влияния. Лазерная резка отличается отсутствием механического воздействия на обрабатываемый материал, возникают минимальные деформации, как временные в процессе резки, так и остаточные после полного остывания. Вследствие этого лазерную резку, даже легкодеформируемых и нежестких заготовок и деталей, можно осуществлять с высокой степенью точности. Благодаря большой мощности лазерного излучения обеспечивается высокая производительность процесса в сочетании с высоким качеством поверхностей реза. Легкое и сравнительно простое управление лазерным излучением позволяет осуществлять лазерную резку по сложному контуру плоских и объемных деталей и заготовок с высокой степенью автоматизации процесса.

Для лазерной резки металлов применяют технологические установки на основе твердотельных, волоконных лазеров и газовых CO2-лазеров, работающих как в непрерывном, так и в импульсно-периодическом режимах излучения. Промышленное применение газо-лазерной резки с каждым годом увеличивается, но этот процесс не может полностью заменить традиционные способы разделения металлов. В сопоставлении со многими из применяемых на производстве установок стоимость лазерного оборудования для резки ещё достаточно высока, хотя в последнее время наметилась тенденция к её снижению. В связи с этим процесс лазерной резки становится эффективным только при условии обоснованного и разумного выбора области применения, когда использование традиционных способов трудоемко или вообще невозможно.

Лучше всего обрабатываются металлы с низкой теплопроводностью, так как в них энергия лазера концентрируется в меньшем объеме металла, и наоборот, при лазерной резке металлов с высокой теплопроводностью может образоваться грат. #лазер #техника #science #физика #physics #производство

💡 Physics.Math.Code
// @physics_lib
🔥45👍2564❤‍🔥2🤩1💯1
#️⃣ Голографическая технология от компании Voxon Photonics

Австралийская компания Voxon Photonics тоже представила своего рода дисплей VX1 для отображения объемных изображений, но в отличие от прототипа из Англии, его можно купить за 10 000 долларов. Изображения он создает не между пластин, а сверху, как на столе, позволяя рассматривать получающуюся картинку с любого ракурса, естественно, без каких-либо 3D-очков. Проект является продолжением разработки Voxiebox, показанной два года назад, и не служит простым демонстрационным образцом. Программисты компании создали для него целый пакет софта для 3D-сканеров, вывода моделей из под 3D Max и других подобных программ, а так же для управления готовыми загруженными моделями с возможностью прокрутки, масштабирования, позиционирования и других действий для полноценной демонстрации под любыми углами. Причем интерфейс управления уже упрощен до максимума – у VX1 есть не только джойстик для «вращения» и масштабирования картинки, но и дисплей управления для выбора типа представления объектов: монохромное, RGB, с разделением на слои и т.д.

Сходство с голограммным дисплеем из Звездных Войн было бы почти полным, если бы не одно но: светящаяся картинка не зря закрыта сверху стеклянным колпаком – без него магия разрушается, потому что картинка формируется не в воздухе, а в толще стекла. Ее формирует проектор, работающий с гранями, как с экранами обратной проекции. Он выводит изображение послойно, но так быстро, что структура изображения кажется стабильной. У Voxiebox вся электроника была значительно менее мощной и проектор проще, поэтому принцип работы виден даже на ролике из YouTube. Впрочем, кое в чем разработка Voxon Photonics даже круче дисплея из Звездных Войн. По утверждению Гэвина Смита, соучредителя компании, при наличии интереса со стороны потенциальных заказчиков установку можно легко увеличить в несколько раз, получив таким образом изображение, измеряемое уже десятками сантиметров. А пока что у VX1 оно имеет размеры 18х18х8 см, и хорошо видно оно лишь в полутьме.

Голограмма — это объёмная оптическая копия реального объекта, основанная на интерференции лучей света — от источника и от предмета. В отличие от фотографии, голограмма трёхмерна, так как фиксирует объём объекта и изменение перспективы при взгляде с разных углов. Для создания голограммы необходимо сначала осветить лазерным лучом фотографируемый объект. Затем второй лазерный луч добавляется к свету, отражённому от объекта, чтобы создать интерференционные полосы, которые затем могут быть записаны на плёнку. #физика #оптика #physics #science #лазер #технологии #наука #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍106🔥2621🫡6🗿4🤔1👻1
💥 Лазерная резка — технология резки и раскроя материалов, использующая лазер высокой мощности и обычно применяемая на промышленных производственных линиях. Сфокусированный лазерный луч, обычно управляемый компьютером, обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые материалы независимо от их теплофизических свойств. В процессе резки, под воздействием лазерного луча материал разрезаемого участка плавится, возгорается, испаряется или выдувается струей газа. При этом можно получить узкие резы с минимальной зоной термического влияния. Лазерная резка отличается отсутствием механического воздействия на обрабатываемый материал, возникают минимальные деформации, как временные в процессе резки, так и остаточные после полного остывания. Вследствие этого лазерную резку, даже легкодеформируемых и нежестких заготовок и деталей, можно осуществлять с высокой степенью точности. Благодаря большой мощности лазерного излучения обеспечивается высокая производительность процесса в сочетании с высоким качеством поверхностей реза. Легкое и сравнительно простое управление лазерным излучением позволяет осуществлять лазерную резку по сложному контуру плоских и объемных деталей и заготовок с высокой степенью автоматизации процесса.

Для лазерной резки металлов применяют технологические установки на основе твердотельных, волоконных лазеров и газовых CO2-лазеров, работающих как в непрерывном, так и в импульсно-периодическом режимах излучения. Промышленное применение газо-лазерной резки с каждым годом увеличивается, но этот процесс не может полностью заменить традиционные способы разделения металлов. В сопоставлении со многими из применяемых на производстве установок стоимость лазерного оборудования для резки ещё достаточно высока, хотя в последнее время наметилась тенденция к её снижению. В связи с этим процесс лазерной резки становится эффективным только при условии обоснованного и разумного выбора области применения, когда использование традиционных способов трудоемко или вообще невозможно.

Лучше всего обрабатываются металлы с низкой теплопроводностью, так как в них энергия лазера концентрируется в меньшем объеме металла, и наоборот, при лазерной резке металлов с высокой теплопроводностью может образоваться грат. #лазер #техника #science #физика #physics #производство

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3814👍12💯32
This media is not supported in your browser
VIEW IN TELEGRAM
💥 Лазерная очистка поверхности старой монеты

Лазерная очистка — метод удаления загрязнений, коррозии и покрытий с металлических поверхностей с использованием направленного высокоэнергетического лазерного луча. В отличие от традиционных методов (абразивных, химических, механических), лазерная технология обеспечивает точную, бесконтактную и экологичную обработку.

Применение:
▪️ Машиностроение — подготовка металлических деталей к дальнейшей обработке или окраске.
▪️ Авиация и аэрокосмическая промышленность — удаление старых покрытий и коррозии с деталей самолётов и космических аппаратов.
▪️ Ремонт и восстановление — восстановление старинных металлических изделий, таких как памятники, оружие или предметы искусства.
▪️ Нефтегазовая отрасль — подготовка трубопроводов и других металлических компонентов, освобождение их от отложений и коррозии.
▪️ Строительство и архитектура — подготовка металлических конструкций, очистка фасадов зданий и памятников от загрязнений и лишних покрытий.

Принцип работы: Процесс лазерной очистки основан на селективном поглощении и испарении загрязнений:
1. Лазерный луч с определённой длиной волны направляется на металлическую поверхность.
2. Загрязняющие вещества (ржавчина, окалина, краска) поглощают энергию лазерного излучения, в то время как сам металл отражает большую часть излучения.
3. Поглощённая энергия вызывает быстрое нагревание и испарение загрязняющих веществ.
4. Испаренные загрязнения удаляются с поверхности потоком инертного газа (например, азота или аргона).

Параметры лазера, такие как длительность импульса, мощность и частота повторения, можно регулировать для оптимизации процесса очистки различных материалов и толщин загрязнений.
#лазер #техника #science #физика #physics #производство

💥 Лазерная резка

🔦 Лазерная сварка с разной формой луча

💥 Лазерное скальпирование микросхемы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥67👍251663🤔1👻1
This media is not supported in your browser
VIEW IN TELEGRAM
💥 Первый лазер был изобретён американским физиком Теодором Майманом 16 мая 1960 года в исследовательской лаборатории Хьюза (Hughes Research Laboratories). Майман создал лазер вопреки мнению многих учёных, которые были уверены, что рубин не годится в качестве рабочей среды. 7 июля 1960 года на специально созванной пресс-конференции Майман объявил о создании лазера и рассказал о возможных областях его применения — связь, медицина, военная техника, транспорт, высокие технологии. Особенности конструкции:
▪️ В качестве активной среды — кристалл искусственного рубина ( оксид алюминия Al₂O₃ с небольшой примесью хрома Cr ).
▪️ Из кристалла был изготовлен стержень в виде цилиндра диаметром 1 и длиной 2 см, который в процессе работы подвергался облучению излучением импульсной газоразрядной лампы.
▪️ Резонатором служил резонатор Фабри-Перо, образованный серебряными зеркальными покрытиями, нанесёнными на торцы стержня.
▪️ Лазер работал в импульсном режиме, излучая свет с длиной волны 694,3 нм.
▪️ Майман предложил принцип накачки рабочего тела — короткими вспышками света от лампы-вспышки.
▪️ Зеркальные покрытия на торцах кристалла создавали положительную обратную связь, чтобы усилитель стал генератором.
▪️ Расчёты Маймана показали, что атомы хрома в кристалле рубина имеют подходящую систему энергетических уровней, которая делает возможной генерацию лазерного излучения.
▪️ Первый лазер Маймана стал отправной точкой для развития лазерных технологий. Лазеры стали незаменимыми инструментами в физике, химии, биологии и других научных дисциплинах, позволили учёным проводить более точные эксперименты и измерения.
▪️ Лазеры стимулировали дальнейшие исследования и инновации в области оптики и фотоники, привели к разработке новых типов лазеров, увеличению мощности и эффективности.

Импульсные лазеры мощнее непрерывных в плане мощности:
▫️Непрерывные лазеры характеризуются постоянной выходной мощностью, которая может достигать десятков киловатт. Это делает их идеальными для задач, требующих высокой мощности на протяжении длительного времени, таких как лазерная резка или сварка металлов.
▫️Импульсные лазеры работают иначе — они передают энергию в короткие, мощные вспышки. Это делает их менее энергоёмкими, поскольку импульсы могут достигать высокой пиковой мощности при минимальном общем энергопотреблении. Такой подход позволяет выполнять точные, деликатные работы, не перегревая материал.

Таким образом, для крупных производств, где необходима высокая мощность и стабильность, лучше подойдут непрерывные лазеры, а для точных задач, таких как микросварка, очистка поверхности или гравировка, рекомендуется использовать импульсные лазеры. #лазер #техника #science #физика #physics #производство

💥 Лазерная очистка поверхности старой монеты

💥 Лазерная резка

🔦 Лазерная сварка с разной формой луча

💥 Лазерное скальпирование микросхемы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
534👍2923🔥14😱3🤩2🫡1