Media is too big
VIEW IN TELEGRAM
Цвет объекта — это комплексный результат ряда факторов, таких как: свойства поверхности (в том числе спектр поглощения и спектр отражения), температура, относительная скорость и прочих. Все эти факторы в сумме дают определённую длину электромагнитной волны.
В 1666 году Исаак Ньютон провёл эксперимент по расщеплению светового луча призмой. В полученном непрерывном спектре чётко различались 7 цветов. С помощью стеклянной призмы Исаак Ньютон (конец ХVII века) впервые разложил белый солнечный свет в непрерывный спектр в виде полосы. Из этих цветов он составил круг, мистически ассоциировав «7 цветов» и «7 планет» и замкнул круг искусственным 8 цветом — «пурпурным». Проверим как это работает на практике. Возьмем 3 источника света (прожектора) — красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга. Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный — пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. #цвет #физика #physics #оптика #волны #опыты #эксперименты #электродинамика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍133🔥29❤🔥12⚡3🆒3👏1
This media is not supported in your browser
VIEW IN TELEGRAM
#магнетизм #физика #physics #колебания #волны #опыты #эксперименты #электродинамика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥60👍43❤11⚡6
Media is too big
VIEW IN TELEGRAM
🔊 Колебания, стоячие волны, резонанс и сахар в качестве индикатора узлов звуковых волн
〰️ Стоячая волна — это устойчивый колебательный (волновой) процесс, возникающий при наложении волн, согласованных по времени и длине. Допустим, в какой-то среде возникает волна. Скажем, человек спел звук. Звуковая волна распространяется и попадает на поверхность. Звук отражается: отражённая волна идёт обратно. Теперь у нас 2 звуковых волны. Как они взаимодействуют? Преграды и неоднородности вызывают наложения падающей и отражённой волн. На результат влияют частота и фаза звука, направление распространения и затухание волн в среде. Вы знаете, что мягкие ткани гасят звук, а твердые вещества, наоборот, хорошо проводят его.
⠀
Допустим, у нас каменный тоннель: он не гасит, а хорошо отражает звук. Если подобрать звук с длиной волны, которая совпадает (или кратна) с поперечным размером тоннеля, мы получим интересный эффект. Возникает стоячая волна. Падающая и отражённая волны согласованы по времени: они начинают усиливать друг друга. Это явление называется резонанс. Стоячая волна появляется при отсутствии потерь в среде распространения и полном отражении падающей волны. В жизни такого нет, небольшие потери энергии будут всегда. #научные_фильмы #опыты #physics #science #физика #наука #механика #колебания #волны
💡 Physics.Math.Code // @physics_lib
〰️ Стоячая волна — это устойчивый колебательный (волновой) процесс, возникающий при наложении волн, согласованных по времени и длине. Допустим, в какой-то среде возникает волна. Скажем, человек спел звук. Звуковая волна распространяется и попадает на поверхность. Звук отражается: отражённая волна идёт обратно. Теперь у нас 2 звуковых волны. Как они взаимодействуют? Преграды и неоднородности вызывают наложения падающей и отражённой волн. На результат влияют частота и фаза звука, направление распространения и затухание волн в среде. Вы знаете, что мягкие ткани гасят звук, а твердые вещества, наоборот, хорошо проводят его.
⠀
Допустим, у нас каменный тоннель: он не гасит, а хорошо отражает звук. Если подобрать звук с длиной волны, которая совпадает (или кратна) с поперечным размером тоннеля, мы получим интересный эффект. Возникает стоячая волна. Падающая и отражённая волны согласованы по времени: они начинают усиливать друг друга. Это явление называется резонанс. Стоячая волна появляется при отсутствии потерь в среде распространения и полном отражении падающей волны. В жизни такого нет, небольшие потери энергии будут всегда. #научные_фильмы #опыты #physics #science #физика #наука #механика #колебания #волны
💡 Physics.Math.Code // @physics_lib
👍99🔥28❤6😍5🤩3❤🔥2🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
〰️ Звуковой резонанс — это явление увеличения амплитуды вынужденных колебаний, если частота вынуждающей силы совпадает с собственной частотой колебательной системы.
Для объяснения резонанса используется специальный прибор, который используется в музыке — камертон.
Камертон вызывает в резонаторном ящике колебание самой деки ящика и воздуха внутри него. Колебания складываются и усиливают звук. При этом выполняется закон сохранения энергии, то есть с резонаторным ящиком камертон звучит меньше по времени, но сильнее.
Если взять точно такой же (имеющий точно такую же звуковую частоту) второй камертон, то должен возникнуть резонанс: частоты совпадут, произойдёт увеличение амплитуды.
#физика #опыты #эксперименты #наука #science #physics #механика #волны #видеоуроки #резонанс
💡 Physics.Math.Code // @physics_lib
Для объяснения резонанса используется специальный прибор, который используется в музыке — камертон.
Камертон вызывает в резонаторном ящике колебание самой деки ящика и воздуха внутри него. Колебания складываются и усиливают звук. При этом выполняется закон сохранения энергии, то есть с резонаторным ящиком камертон звучит меньше по времени, но сильнее.
Если взять точно такой же (имеющий точно такую же звуковую частоту) второй камертон, то должен возникнуть резонанс: частоты совпадут, произойдёт увеличение амплитуды.
#физика #опыты #эксперименты #наука #science #physics #механика #волны #видеоуроки #резонанс
💡 Physics.Math.Code // @physics_lib
👍64🔥12❤9😎2✍1
Media is too big
VIEW IN TELEGRAM
🔊 Акустическая левитация — это метод подвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения звуковых волн высокой интенсивности.
Обычно используются звуковые волны на ультразвуковых частотах.
Акустическая левитация — устойчивое положение весомого объекта в области узлов стоячей акустической волны. Частицы захватываются в узлах стоячей волны, образованной либо источником звука и отражателем (в случае рупора Ланжевена), либо двумя наборами источников (в случае TinyLev). Это зависит от размера частиц по отношению к длине волны, обычно в районе 10% или менее, а максимальный вес при левитации обычно составляет порядка нескольких миллиграммов. #акустика #механика #волны #колебания #физика #physics #видеоуроки #gif
💡 Physics.Math.Code // @physics_lib
Обычно используются звуковые волны на ультразвуковых частотах.
Акустическая левитация — устойчивое положение весомого объекта в области узлов стоячей акустической волны. Частицы захватываются в узлах стоячей волны, образованной либо источником звука и отражателем (в случае рупора Ланжевена), либо двумя наборами источников (в случае TinyLev). Это зависит от размера частиц по отношению к длине волны, обычно в районе 10% или менее, а максимальный вес при левитации обычно составляет порядка нескольких миллиграммов. #акустика #механика #волны #колебания #физика #physics #видеоуроки #gif
💡 Physics.Math.Code // @physics_lib
👍64🔥16😍10❤7🗿2
📚 Лекции по сверхвысокочастотной электронике для физиков [2 тома] [2003] Трубецков, Храмов
💾 Скачать книги
Лекции предназначены для физиков различных специальностей, интересующихся процессами взаимодействия электронов с электромагнитными полями, для научных работников, аспирантов и инженеров, проводящих исследования в области вакуумной СВЧ-электроники, радиофизики, радиотехники и физики плазмы. Они могут быть полезны студентам старших курсов соответствующих специальностей.
✏️ Рудольф Компфнер, создатель «лампы с бегущей волной» (без которой не было бы, например, спутниковой связи), сказал: «Самый успешный путь обучения — проделать все самому и учиться на собственных ошибках. Хороший путь — наблюдать, как кто-то проделывает это. Третий путь — слушать лекции о том, как и что делать; и последний стоящий путь — прочитать об этом». Поэтому лекции нужны, особенно, если они с обратной связью, и еще особеннее, когда преподаватель — это не просто "лектор", а применяет технологию "два с половиной", как назвал бы ее Компфнер. То есть показывает на занятиях элементы реального процесса решения задач. Это рискованная методика, которая требует от педагога самоуверенности, а от участников занятия — доверия. Создать такую ситуацию нелегко; лучшим примером был Ричард Фейнман. #электродинамика #электроника #физика #СВЧ #оптика #волны #колебания #квантовая_физика
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Лекции предназначены для физиков различных специальностей, интересующихся процессами взаимодействия электронов с электромагнитными полями, для научных работников, аспирантов и инженеров, проводящих исследования в области вакуумной СВЧ-электроники, радиофизики, радиотехники и физики плазмы. Они могут быть полезны студентам старших курсов соответствующих специальностей.
✏️ Рудольф Компфнер, создатель «лампы с бегущей волной» (без которой не было бы, например, спутниковой связи), сказал: «Самый успешный путь обучения — проделать все самому и учиться на собственных ошибках. Хороший путь — наблюдать, как кто-то проделывает это. Третий путь — слушать лекции о том, как и что делать; и последний стоящий путь — прочитать об этом». Поэтому лекции нужны, особенно, если они с обратной связью, и еще особеннее, когда преподаватель — это не просто "лектор", а применяет технологию "два с половиной", как назвал бы ее Компфнер. То есть показывает на занятиях элементы реального процесса решения задач. Это рискованная методика, которая требует от педагога самоуверенности, а от участников занятия — доверия. Создать такую ситуацию нелегко; лучшим примером был Ричард Фейнман. #электродинамика #электроника #физика #СВЧ #оптика #волны #колебания #квантовая_физика
💡 Physics.Math.Code // @physics_lib
👍54🔥12❤6⚡2❤🔥2😍2
Media is too big
VIEW IN TELEGRAM
🔦 Владимир Сурдин: ощущение скорости движения
История определения скорости Света уходит к временам Галилео Галилея. До Галилея скорость Света считалась бесконечной. Галилей первый попытался со своим помощником определить скорость Света. Опыт заключался в том, что Галилей и помощник, находились с фонарями на двух холмах, расстояние между которыми было известным. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. Однако ничего не получилось.
Олаф Ремер, исследуя движение спутника Ио на орбите вокруг Юпитера, заметил задержку прихода Света от спутника при разном положении Земли на орбите. Исходя из этого он определил скорость Света равной 220000км/сек.
Английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.
Опыты Майкельсона продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму. Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Майкельсон определил величину скорости света – 299796 км/сек.
Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. #электродинамика #электроника #физика #свет #оптика #волны #колебания #квантовая_физика
💡 Physics.Math.Code // @physics_lib
История определения скорости Света уходит к временам Галилео Галилея. До Галилея скорость Света считалась бесконечной. Галилей первый попытался со своим помощником определить скорость Света. Опыт заключался в том, что Галилей и помощник, находились с фонарями на двух холмах, расстояние между которыми было известным. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. Однако ничего не получилось.
Олаф Ремер, исследуя движение спутника Ио на орбите вокруг Юпитера, заметил задержку прихода Света от спутника при разном положении Земли на орбите. Исходя из этого он определил скорость Света равной 220000км/сек.
Английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.
Опыты Майкельсона продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму. Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Майкельсон определил величину скорости света – 299796 км/сек.
Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. #электродинамика #электроника #физика #свет #оптика #волны #колебания #квантовая_физика
💡 Physics.Math.Code // @physics_lib
👍124❤19🔥12⚡7🤔3
This media is not supported in your browser
VIEW IN TELEGRAM
▪️ Центрального, главного цвета на основе окисей алюминия и хрома, он же тонер или подложка — именно этот цвет преломляется посредством нанесенных вслед за ним микрослоев.
▪️ Базового, обеспечивающего эффект переливающихся тонов при различном освещении и с разных точек зрения. Имеет значение положение микрочастиц.
▪️ Качественного автолака, также наносимого 2–3 раза поверх окрашенных частей автомобиля.
Сочетание прозрачных слоев с полупрозрачными и дает желаемый зеркальный эффект. Длину волны определяет толщина пласта тонера на основе металлической окиси, от нее же зависит цвет волн — синяя, желтая или красная — и характер отражения: отражается или подавляется, то есть какие оттенки будут визуально восприниматься человеком с разных углов зрения. Из-за смешивания различных пигментов и разной толщины пластов цветовая гамма получается разнообразнейшей: это может быть зеленый, красный, синий, фиолетовый, желтый, голубой, белый, серый и любой другой цвет с совершенно невероятными комбинациями оттенков. #оптика #опыты #физика #свет #волны #physics #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍107❤21🤩16🔥9❤🔥7⚡5😱4😍2🤨2
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Резонанс: частот имеет значение
Резонанс (фр. résonance, от лат. resono «откликаюсь») — частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при приближении частоты внешнего воздействия к определённым значениям, характерным для данной системы. Эти значения называют собственными частотами; в простых случаях такая частота одна, но может быть и несколько.
Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если подталкивать качели в определённые моменты времени в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния можно найти по формуле:
где g — это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна и включает эллиптический интеграл.) Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).
#физика #опыты #эксперименты #наука #science #physics #механика #волны #видеоуроки #резонанс
💡 Physics.Math.Code // @physics_lib
Резонанс (фр. résonance, от лат. resono «откликаюсь») — частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при приближении частоты внешнего воздействия к определённым значениям, характерным для данной системы. Эти значения называют собственными частотами; в простых случаях такая частота одна, но может быть и несколько.
Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если подталкивать качели в определённые моменты времени в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния можно найти по формуле:
f = (1/2𝝅)√(g/L)
где g — это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна и включает эллиптический интеграл.) Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).
#физика #опыты #эксперименты #наука #science #physics #механика #волны #видеоуроки #резонанс
💡 Physics.Math.Code // @physics_lib
👍127❤19🔥15🤯6🤩4🤔2❤🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Красный цвет имеет максимальную длину волны из видимого спектра и, следовательно, несёт наименьшее количество энергии. По мере увеличения глубины поглощаются красные, оранжевые, затем жёлтые, а иногда и зелёные волны, поэтому оставшийся видимый свет состоит из синего и фиолетового цветов с более короткой длиной волны. Вот почему океан на подводных съёмках мы видим в оттенках синего. А на глубину порядка двухсот метров (конкретика сильно зависит от условий) уже не проникает никакой видимый свет.
Вода представляет собой синий светофильтр, тем более густой, чем толще слой воды. Все краски с увеличением глубины меняются. Так, например, красный цвет на глубине около 5 м становится бордовым, затем с погружением постепенно превращается в коричневый, а за пределами 12 м красные цвета все более превращаются в темно-зеленые. На глубине 20-30 м все цвета сизо-серые, они однотонны и тусклы.
Чем короче длина волны у света, тем энергичнее фотоны, и наоборот. Отличным примером служит рентгеновское излучение. Оно находится вне видимо спектра, так как длина его волны чрезвычайно мала, что и позволяет фотонами проходить насквозь некоторые предметы. Аналогично, чем больше длина волны, тем меньшей способностью к сквозному прохождению сквозь предметы обладают фотоны. Как уже упоминалось выше, у красного света самая большая длина волны из видимого спектра, поэтому красный свет поглощается лучше остальных. Другими словами, красный свет просто рассеивается в воде.
Если красный предмет постепенно погружать под воду, его цвет будет меняться: на небольшой глубине это незаметно; приблизительно на глубине 5 метров предмет станет бордовым; затем с увеличением глубины он сперва начнет казаться коричневым, потом зелёным, а на глубине около 30 метров станет чёрным. Это связано с тем, что цвет какого-либо тела определяется цветом, отражаемым этим телом. Например, красный предмет поглощает все цвета, кроме красного. Чем глубже погружается предмет, тем меньше света на него падает и тем меньше он отражает; а значит, на большой глубине, любой цвет будет казаться чёрным. #оптика #физика #science #physics #волны #квантовая_физика #опыты #эксперименты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍180🔥46❤16❤🔥3🌚3⚡1😱1🤝1🫡1