Forwarded from Machinelearning
Репозиторий на Github c набором ipynb-туториалов по Prompt Engineering для освоения методов создания оптимальных промптов для модели Qwen2.5-14B.
Руководство разделено на 9 глав с практическими упражнениями и приложением с "продвинутыми" методами. В каждой главе есть "Example Playground" для экспериментов с примерами и наблюдения за изменениями в инференсе Ollama.
Руководство использует модель Qwen 2.5-14B, но все материалы подходят и для модели Qwen 2.5-7B.
Начальный уровень
Средний уровень
Продвинутый уровень
Приложение: За пределами стандартных подсказок
@ai_machinelearning_big_data
#AI #ML #LLM #Github #Tutorial #Ollama
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤4🔥2
Forwarded from Machinelearning
🔥 Sky-T1-32B-Preview 32B - 450$ - это все, что вам нужно, чтобы обучить свою собственную O1 🌟
Модель достигает конкурентоспособных результатов в рассуждениях и кодинге, 82.4 в Math500, 86.3 в LiveCode-East по сравнению с QwQ (85.4, 90.7) и o1-preview (81.4, 92.9) 🎓
Это новая O1 - подобная модель с открытым исходным кодом, обученная за < 450$, полностью открытый исходный код, 17K обучающих данных, , модель превосходит Qwen-2.5-32B-Instruct по всем бенчмаркам 💥
🤗HF: https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview
@ai_machinelearning_big_data
#llm #ml
Модель достигает конкурентоспособных результатов в рассуждениях и кодинге, 82.4 в Math500, 86.3 в LiveCode-East по сравнению с QwQ (85.4, 90.7) и o1-preview (81.4, 92.9) 🎓
Это новая O1 - подобная модель с открытым исходным кодом, обученная за < 450$, полностью открытый исходный код, 17K обучающих данных, , модель превосходит Qwen-2.5-32B-Instruct по всем бенчмаркам 💥
🤗HF: https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview
@ai_machinelearning_big_data
#llm #ml
👍18🔥10❤5
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
Paper submitted by #DeepSeek team has generated significant attention in the AI community.
This work addresses the enhancement of reasoning capabilities in Large Language Models (LLMs) through the application of reinforcement learning techniques. The authors introduce a novel framework, DeepSeek-R1, which aims to improve LLM reasoning abilities by incorporating incentives for logical reasoning processes within their training. This integration of reinforcement learning allows LLMs to go beyond basic linguistic processing, developing sophisticated reasoning methods that can boost performance across a wide array of complex applications.
This approach has cause lots of discussions in different communities, but it definitely opens up the whole new direction of development for the research.
Source: https://arxiv.org/abs/2501.12948
#nn #LLM
@opendatascience
Paper submitted by #DeepSeek team has generated significant attention in the AI community.
This work addresses the enhancement of reasoning capabilities in Large Language Models (LLMs) through the application of reinforcement learning techniques. The authors introduce a novel framework, DeepSeek-R1, which aims to improve LLM reasoning abilities by incorporating incentives for logical reasoning processes within their training. This integration of reinforcement learning allows LLMs to go beyond basic linguistic processing, developing sophisticated reasoning methods that can boost performance across a wide array of complex applications.
This approach has cause lots of discussions in different communities, but it definitely opens up the whole new direction of development for the research.
Source: https://arxiv.org/abs/2501.12948
#nn #LLM
@opendatascience
👍24❤6
Forwarded from Machinelearning
⚡️ Gemma 3 QAT
Google DeepMind выпустили обновленные версии своих языковых моделей Gemma 3, которые стали значительно эффективнее по использованию памяти без существенной потери производительности.
Ключевая технология: QAT (Quantization-Aware Training)
Что это? QAT — это техника обучения, при которой модель во время дообучения "учится" работать с пониженной точностью вычислений (используя меньше бит для представления чисел). Это имитирует условия, в которых модель будет работать после квантизации (сжатия).
Обычная квантизация после обучения может привести к падению точности. QAT позволяет модели заранее адаптироваться к работе в низкоточном режиме, минимизируя потерю качества после финальной квантизации.
Каждая модель (1B, 4B, 12B, 27B) была дообучена примерно на 5000 шагов с имитацией низкой разрядности весов. При этом использовался приём, похожий на знание-дистилляцию: оригинальная неквантованная модель выступала в роли «учителя».
Преимущество QAT-подхода для Gemma 3 оказалось колоссальным. Официально заявлено, что квантованные модели Gemma 3 QAT сохраняют качество, практически не упало, при этом требуют в ~3 раза меньше памяти.
Например, объём памяти для хранения весов самой крупной модели на 27B параметров сократился с ~54 ГБ (в формате bfloat16) до ~14 ГБ в 4-битном целочисленном формате – это экономия памяти примерно в ~3–4 раза.
✔️HF
@ai_machinelearning_big_data
#google #gemma #AI #ML #LLM #Quantization
Google DeepMind выпустили обновленные версии своих языковых моделей Gemma 3, которые стали значительно эффективнее по использованию памяти без существенной потери производительности.
Ключевая технология: QAT (Quantization-Aware Training)
Что это? QAT — это техника обучения, при которой модель во время дообучения "учится" работать с пониженной точностью вычислений (используя меньше бит для представления чисел). Это имитирует условия, в которых модель будет работать после квантизации (сжатия).
Обычная квантизация после обучения может привести к падению точности. QAT позволяет модели заранее адаптироваться к работе в низкоточном режиме, минимизируя потерю качества после финальной квантизации.
Каждая модель (1B, 4B, 12B, 27B) была дообучена примерно на 5000 шагов с имитацией низкой разрядности весов. При этом использовался приём, похожий на знание-дистилляцию: оригинальная неквантованная модель выступала в роли «учителя».
Преимущество QAT-подхода для Gemma 3 оказалось колоссальным. Официально заявлено, что квантованные модели Gemma 3 QAT сохраняют качество, практически не упало, при этом требуют в ~3 раза меньше памяти.
Например, объём памяти для хранения весов самой крупной модели на 27B параметров сократился с ~54 ГБ (в формате bfloat16) до ~14 ГБ в 4-битном целочисленном формате – это экономия памяти примерно в ~3–4 раза.
ollama run hf(.)co/google/gemma-3-4b-it-qat-q4_0-gguf
✔️HF
@ai_machinelearning_big_data
#google #gemma #AI #ML #LLM #Quantization
👍5🔥5❤1🥰1
Forwarded from Machine learning Interview
🚀 Релиз от NVIDIA: Llama-Nemotron-Ultra 253B!
Llama-Nemotron-Ultra — модель с 253B параметрами, специально заточенная под задачи reasoning .
📦 Что внутри:
- LLaMA 405B, радикально преобразованная с помощью NAS pruning
- Пост-тренинг с фокусом на reasoning: SFT + RL
- Вычисления в FP8 для производительности без потери качества
- Open weights + открытые данные
🧠 Подходит для сложных задач рассуждения, настройки под кастомные пайплайны и исследований в области AGI.
🔗 Попробовать: https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
#LLM #NVIDIA #OpenWeights #Reasoning #RLHF #FP8 #AIresearch #HuggingFace
@machinelearning_interview - подписаться
Llama-Nemotron-Ultra — модель с 253B параметрами, специально заточенная под задачи reasoning .
📦 Что внутри:
- LLaMA 405B, радикально преобразованная с помощью NAS pruning
- Пост-тренинг с фокусом на reasoning: SFT + RL
- Вычисления в FP8 для производительности без потери качества
- Open weights + открытые данные
🧠 Подходит для сложных задач рассуждения, настройки под кастомные пайплайны и исследований в области AGI.
🔗 Попробовать: https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
#LLM #NVIDIA #OpenWeights #Reasoning #RLHF #FP8 #AIresearch #HuggingFace
@machinelearning_interview - подписаться
👍7🔥7❤3
Forwarded from Китай.AI
🔮 CN-AI-MODELS | ИИ модели Китая
🔥 Huawei представила языковую модель Pangu Ultra на 135 млрд параметров
Компания Huawei представила новую версию своей флагманской модели — Pangu Ultra. Это первая в Китае крупномасштабная языковая модель, полностью разработанная и обученная на отечественных чипах Ascend NPU без использования западных технологий.
Главное достижение:
• Модель (135B) превосходит Llama 405B и Mistral Large 2, соответствуя DeepSeek-R1 при меньшем размере
• Обучалась на 8192 NPU Ascend и 13.2 триллионах токенов с уникальными архитектурными решениями
🔍 Технологические инновации:
Стабильность обучения
• DSSN (Depth-scaled sandwich-norm) – новая архитектура нормализации для глубоких моделей
• TinyInit – революционный метод инициализации параметров
Оптимизация данных
• "Умный" токенизатор с 153,376 токенами (охватывает код, математику, языки)
• Трехэтапное обучение: общие знания → логика → специализация
⚡ Рекордные показатели:
- Поддерживает контекст до 128К токенов (~170 тыс. китайских иероглифов)
- Достигла 50% эффективности использования вычислительных ресурсов (MFU) на кластере из 8192 NPU
Технические детали:
• Гибридный параллелизм: 128DP × 8TP × 8PP + виртуальный конвейер
• Оптимизации системы: MC2, NFA, RoPE-операторы
• Потребление памяти сокращено на 30% за счет общего кэширования
📌 Вывод: Pangu Ultra доказывает возможность создания конкурентных LLM без зависимости от западных технологий, открывая новую эру китайского ИИ.
Технический отчет
#КитайскийИИ #КитайAI #Huawei #LLM #БольшиеМодели
🔥 Huawei представила языковую модель Pangu Ultra на 135 млрд параметров
Компания Huawei представила новую версию своей флагманской модели — Pangu Ultra. Это первая в Китае крупномасштабная языковая модель, полностью разработанная и обученная на отечественных чипах Ascend NPU без использования западных технологий.
Главное достижение:
• Модель (135B) превосходит Llama 405B и Mistral Large 2, соответствуя DeepSeek-R1 при меньшем размере
• Обучалась на 8192 NPU Ascend и 13.2 триллионах токенов с уникальными архитектурными решениями
🔍 Технологические инновации:
Стабильность обучения
• DSSN (Depth-scaled sandwich-norm) – новая архитектура нормализации для глубоких моделей
• TinyInit – революционный метод инициализации параметров
Оптимизация данных
• "Умный" токенизатор с 153,376 токенами (охватывает код, математику, языки)
• Трехэтапное обучение: общие знания → логика → специализация
⚡ Рекордные показатели:
- Поддерживает контекст до 128К токенов (~170 тыс. китайских иероглифов)
- Достигла 50% эффективности использования вычислительных ресурсов (MFU) на кластере из 8192 NPU
Технические детали:
• Гибридный параллелизм: 128DP × 8TP × 8PP + виртуальный конвейер
• Оптимизации системы: MC2, NFA, RoPE-операторы
• Потребление памяти сокращено на 30% за счет общего кэширования
📌 Вывод: Pangu Ultra доказывает возможность создания конкурентных LLM без зависимости от западных технологий, открывая новую эру китайского ИИ.
Технический отчет
#КитайскийИИ #КитайAI #Huawei #LLM #БольшиеМодели
GitHub
pangu-ultra/pangu-ultra-report.pdf at main · pangu-tech/pangu-ultra
Contribute to pangu-tech/pangu-ultra development by creating an account on GitHub.
🔥8
Forwarded from Machinelearning
Команда Fundamental AI Research (FAIR) компании Марка Цукерберга представила серию новых разработок: методики и модели, улучшающие компьютерное зрение, 3D-локализацию объектов и совместное обучение языковых агентов. Все модели, техотчеты, датасеты и код этих проектов уже доступны на платформах Hugging Face и GitHub.
Perception Encoder - новый виток развития в сфере обработки визуальной информации. Модель, обученная с помощью этой методики на масштабных данных, превосходит аналоги в задачах классификации изображений и видео, включая сложные сценарии — распознавание ската, зарывшегося в морское дно, или крошечной птицы на заднем плане снимка. Благодаря интеграции с LLM, Encoder улучшает ответы на визуальные вопросы, описание сцен и понимание пространственных отношений между объектами.
Для задач, требующих анализа видео и текста, Meta выпустила Perception Language Model (PLM). Ее обучали на 2,5 млн. новых аннотированных видеозаписей — это крупнейший датасет для понимания действий и контекста в динамике. PLM доступна в трёх вариантах (1, 3 и 8 млрд параметров). Дополнительный бонус — PLM-VideoBench, бенчмарк для оценки тонкого понимания сцен, который заполняет пробелы существующих тестов.
Как заставить робот найти красную чашку на столе или вазу возле телевизора? Locate 3D решает эту задачу через анализ 3D-точечных облаков и текстовых подсказок. Модель учитывает пространственные связи и контекст, отличая «вазу у TV» от «вазы на столе». В основе — трехэтапный пайплайн: предобработка данных, кодирование 3D-сцены и декодирование запроса. Для обучения использовали 130 тыс. аннотаций из ARKitScenes и ScanNet, что вдвое увеличило объём доступных данных для локализации объектов.
Dynamic Byte Latent Transformer - архитектура, которая работает на уровне байтов, а не токенов, что повышает устойчивость к ошибкам, ускоряет обработку и "отменяет" необходимость токенизации для масштабирования. На тесте CUTE модель показывает преимущество в +55 пунктов против традиционных подходов.
Совместное решение задач — следующий этап развития ИИ. Collaborative Reasoner — это фреймворк, где два агента ведут диалог, чтобы прийти к общему решению. Они могут спорить, аргументировать и согласовывать ответы на сложные вопросы. Для обучения используют синтетические диалоги, которые генерирует сама модель. Результаты впечатляют: на некоторых задачах совместная работа даёт прирост эффективности до 29% по сравнению с одиночным агентом.
@ai_machinelearning_big_data
#AI #ML #LLM #CV #NLP #FAIR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍4🔥2
Forwarded from Китай.AI
🔮 CN-AI-MODELS | ИИ модели Китая
🚀 Alibaba представил DianJin-R1 — мощную языковую модель для финансовых задач
Команда Alibaba Cloud и Университет Сучжоу разработали инновационную модель с открытым исходным кодом, которая превосходит аналоги в области финансового анализа.
🔍 В двух словах:
- Модель доступна в двух версиях: 7B и 32B параметров
- Обучена на уникальных финансовых датасетах + мультиагентный синтез данных
- Превышает производительность DeepSeek-R1 и QwQ в тестах
📊 Ключевые особенности:
1️⃣Открытые данные и модели:
- Дамп DianJin-R1-Data включает CFLUE, FinQA и CCC (китайская нормативная проверка)
- Модели на Hugging Face, ModelScope и GitHub
2️⃣Технологии обучения:
- Двухэтапная оптимизация: Supervised Fine-Tuning + Reinforcement Learning
- Система вознаграждений за структурированные выводы и точность
3️⃣Мультиагентный синтез:
- Платформа Tongyi Dianjin генерирует сложные финансовые кейсы через взаимодействие ИИ-агентов
⚙️ Технические детали:
• Использованы Qwen2.5-7B/32B-Instruct как база
• GRPO (Group Relative Policy Optimization) для RL-фазы
• Фичинг: 38k+ экзаменационных вопросов (CFLUE) + 8k англоязычных QA (FinQA)
🔥 Результаты тестов:
▫️ DianJin-R1-7B сравним с топовой QwQ при меньших ресурсах
▫️ DianJin-R1-32B лидирует во всех категориях
"Это не просто шаг вперед в финтехе — мы переосмыслили подход к обучению ИИ для регуляторных задач" — команда разработчиков.
Официальный сайт | Hugging Face | GitHub
Подробнее в оригинальной статье.
#КитайскийИИ #КитайAI #FinTech #LLM #OpenSource #Alibaba #Qwen
🚀 Alibaba представил DianJin-R1 — мощную языковую модель для финансовых задач
Команда Alibaba Cloud и Университет Сучжоу разработали инновационную модель с открытым исходным кодом, которая превосходит аналоги в области финансового анализа.
🔍 В двух словах:
- Модель доступна в двух версиях: 7B и 32B параметров
- Обучена на уникальных финансовых датасетах + мультиагентный синтез данных
- Превышает производительность DeepSeek-R1 и QwQ в тестах
📊 Ключевые особенности:
1️⃣Открытые данные и модели:
- Дамп DianJin-R1-Data включает CFLUE, FinQA и CCC (китайская нормативная проверка)
- Модели на Hugging Face, ModelScope и GitHub
2️⃣Технологии обучения:
- Двухэтапная оптимизация: Supervised Fine-Tuning + Reinforcement Learning
- Система вознаграждений за структурированные выводы и точность
3️⃣Мультиагентный синтез:
- Платформа Tongyi Dianjin генерирует сложные финансовые кейсы через взаимодействие ИИ-агентов
⚙️ Технические детали:
• Использованы Qwen2.5-7B/32B-Instruct как база
• GRPO (Group Relative Policy Optimization) для RL-фазы
• Фичинг: 38k+ экзаменационных вопросов (CFLUE) + 8k англоязычных QA (FinQA)
🔥 Результаты тестов:
▫️ DianJin-R1-7B сравним с топовой QwQ при меньших ресурсах
▫️ DianJin-R1-32B лидирует во всех категориях
"Это не просто шаг вперед в финтехе — мы переосмыслили подход к обучению ИИ для регуляторных задач" — команда разработчиков.
Официальный сайт | Hugging Face | GitHub
Подробнее в оригинальной статье.
#КитайскийИИ #КитайAI #FinTech #LLM #OpenSource #Alibaba #Qwen
huggingface.co
DianJin (Qwen DianJin)
Org profile for Qwen DianJin on Hugging Face, the AI community building the future.
👍2❤1
Forwarded from Machinelearning
NeMo-Inspector от NVIDIA — это инструмент, который превращает анализ генераций из рутины в осмысленный процесс. Он не просто показывает результаты, а помогает их систематизировать, сравнивать и даже чистить данные.
NeMo-Inspector не просто просмотрщик логов. Это полноценная среда, где можно менять промпты на лету, маркировать проблемные данные и проверять гипотезы.
Для инженеров, которые хотят не просто получать ответы от LLM, но и понимать, как они рождаются, NeMo-Inspector мастхэв. Он не даст магии, зато сэкономит часы ручного разбора и поможет найти слабые места даже в сложных пайплайнах, а поддержка Markdown, LaTeX и подсветки синтаксиса сделает работу с математическими задачами или кодом менее муторной.
Гибкость проводимого анализа - особенность NeMo-Inspector. Вы можете сравнивать, как одна модель справляется с разными параметрами (температура, top_p) или как разные модели решают одну задачу. Допустим, проверяете, повышает ли CoT точность ответов. NeMo-Inspector выведет результаты бок о бок, а еще посчитает статистику: доля правильных ответов, «уверенность» модели (persistence) или кастомные метрики, которые можно задать самостоятельно через Python-функции.
Из практических кейсов: NeMo-Inspector помог «почистить» синтетический датасет GSM-Plus, где 46,99% данных оказались проблемными (в некоторых вопросах было по два знака вопроса — модель путалась, на какой отвечать). В проекте с OpenMath-Mistral-7B выяснилось, что 26% ошибок связаны с падением качества сгенерированного кода. После доработки датасета точность модели выросла на 4,17%.
@ai_machinelearning_big_data
#AI #ML #LLM #NeMoInspector #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3🔥1
Forwarded from Анализ данных (Data analysis)
Apple внезапно опубликовала исследование, которое разоблачает популярные LLM с "цепочкой размышлений" (Chain-of-Thought) — такие как Gemini 2.5 Pro, OpenAI o3 и DeepSeek R1.
📌 Что тестировали?
Логические задачи:
• башни Ханоя (100+ шагов!)
• загадка про волка, козу и капусту
• головоломки с правилами и условиями
И всё это — с усложнением.
💥 Результаты:
— 🔁 Модели не думают, а вспоминают
Они не решают задачу шаг за шагом, а ищут похожие примеры в своей базе знаний. Это имитация мышления, а не само мышление.
— 🤯 "Переосмысление" вредит
Если задача простая, модель находит верный ответ — и… продолжает «думать» дальше, усложняя всё и случайно портя решение.
— 🧠 Больше размышлений ≠ лучше результат
Дать больше токенов и времени на размышления не помогает. На сложных задачах модели просто сдаются быстрее. Даже "бесконечный" бюджет не спасает.
— 🧪 Few-shot примеры не работают
Даже если расписать пошаговое решение и дать примеры — модель всё равно ломается, если задача ей незнакома.
— 🏗 Модели обожают Ханой, но ненавидят загадки
Башни Ханоя решаются идеально даже на 100+ шагов.
А вот в простой задаче с козой и капустой — модели сдаются на 4-м шаге. Почему? Ханой — в датасетах, загадки про реку — нет.
🧠 Почему LLM не справляются с Ханойскими башнаями при большом числе дисков
Модели вроде Sonnet 3.7, DeepSeek R1 и o3-mini не могут правильно решать башни Ханоя, если дисков больше 13 — и вот почему:
📏 Немного математики:
• Чтобы решить башни Ханоя, нужно минимум 2ⁿ − 1 ходов
• Один ход — это примерно 10 токенов (формат: «переместить диск X с A на B»)
• А значит, для 15 дисков нужно ~**327,670 токенов** только на вывод шагов
🧱 Лимиты моделей:
| Модель | Лимит токенов | Макс. число дисков (без размышлений) |
|--------------|----------------|---------------------------------------|
| DeepSeek R1 | 64k | 12
| o3-mini | 100k | 13
| Sonnet 3.7 | 128k | 13
И это без учёта reasoning (внутренних размышлений), которые модель делает перед финальным ответом.
🔍 Что реально происходит:
• Модели не могут вывести все шаги, если дисков слишком много
• При >13 дисках они просто пишут что-то вроде:
> *"Из-за большого количества шагов я опишу метод, а не приведу все 32 767 действий..."*
• Некоторые модели (например, Sonnet) перестают "думать" уже после 7 дисков — они просто описывают алгоритм и переходят к финальному ответу без вычислений
🎲 А теперь представим, что модель угадывает каждый шаг с точностью 99.99%
На задаче с 15 дисками (32767 ходов) ошибка почти неизбежна — чистая математика:
даже 0.01% ошибок на токенах *экспоненциально* накапливаются
🍏 Интересно, что Apple выпустила это исследование за день до WWDC 2025.
Подколка конкурентам? А завтра, может, и своё покажут. 🤔
📎 Исследование: https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
@data_analysis_ml
#AI #LLM #AGI #Apple #WWDC2025 #PromptEngineering #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5🔥5👍4
Forwarded from Machinelearning
Goodfire AI, вдохновившись примером Anthropic в интерпретации внутренних процессов Claude, воспроизвели методы трассировки цепей межслойных транскодеров (Cross-Layer Transcoders, CLT) на GPT-2 Small, чтобы проверить их способность раскрывать известные механизмы трансформеров.
Выбор на GPT-2 Small пал не случайно, эта модель небольшая и уже была ранее подвергнута ручному реверс-инжинирингу.
Cross-Layer Transcoders выжимают из модели разреженные признаки, которые объясняют работу MLP-слоев. Визуализируют это через графы атрибуции — это карты влияния признака на выход модели.
Натренировали на 100M токенов из FineWeb, получили ~590K признаков. Точность CLT-реплики модели составила 59%, что близко к оригинальным статьям. Тестировали на задаче сравнения чисел («больше, чем»), идеальном полигоне, где уже известны ключевые механизмы.
Задача "Больше, чем" (ориг. "greater-than") взята из статьи Michael Hanna, она заставляет предсказывать большие числа для второго года в диапазоне дат.
Промпт «The war lasted from the year 1711 to 17». CLT построил граф, где признаки с токена «11» (последняя цифра года) активнее всего влияли на предсказание.
Дальше, выделили топ-160 признаков, для каждого построили логит-атрибуции — теплокарты, показывающие, как признак влияет на выходные годы (ZZ) при разных входных (YY).
Похоже, CLT подсветил кучу узкоспециализированных «сравнивателей», а не универсальные нейроны, как в ручных исследованиях.
CLT автоматически находит интерпретируемые признаки, даже такие неочевидные, как абстрактная четность. Но их «разреженный» мир выглядит иначе, чем ручная трассировка цепей: тут больше узких признаков-«спецов» (Feature 461858 для диапазона 10–30) и меньше универсальных механизмов.
Возможно, дело в методе: CLT смотрит изолированные вклады фич, а в полной модели они взаимодействуют.
В общем, эксперименты с CLT показал, что под капотом языковых моделей не только четкие «сравниватели чисел», но и куча скрытых паттернов вроде детекторов контраста или любителей чисел, кратных 5. И да, полуавтономный анализ иногда видит то, что люди упускают.
@ai_machinelearning_big_data
#AI #ML #LLM #Research #CLT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤3🔥1😐1
Forwarded from Machinelearning
MiniMax-M1 — первая в мире open-weight гибридная reasoning‑LLM c 1M контекстом (8× DeepSeek R1) и гибридной архитектурой MoE + lightning attention.
• 456 млрд параметров (45,9 млрд активируются на токен), сверхэффективная генерация — 25% FLOPs DeepSeek R1 на 100K токенов
• Обучение через RL с новым алгоритмом CISPO, решающим реальные задачи от математики до кодинга
• На обучение было потрачено $534K, две версии — 40K/80K “thinking budget”
• Обходит DeepSeek R1 и Qwen3-235B на бенчмарках по математике и кодингу,
• Топ результат на задачах для software engineering и reasoning
Бенчмарки:
AIME 2024: 86.0 (M1-80K) vs 85.7 (Qwen3) vs 79.8 (DeepSeek R1)
SWE-bench Verified: 56.0 vs 34.4 (Qwen3)
OpenAI-MRCR (128k): 73.4 vs 27.7 (Qwen3)
TAU-bench (airline): 62.0 vs 34.7 (Qwen3)
LongBench-v2: 61.5 vs 50.1 (Qwen3)
▪Hugging Face: https://huggingface.co/collections/MiniMaxAI/minimax-m1-68502ad9634ec0eeac8cf094
▪GitHub: https://github.com/MiniMax-AI/MiniMax-M1
▪Tech Report: https://github.com/MiniMax-AI/MiniMax-M1/blob/main/MiniMax_M1_tech_report.pdf
@ai_machinelearning_big_data
#llm #reasoningmodels #minimaxm1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6🔥6👍3
Publication: https://arxiv.org/abs/2506.01963
Original post in Russian: https://yangx.top/Fourier_series/416
P.S. Fourier Series (@Fourier_series) is a great channel, get serialized! Fourier Transform is for the best!
#LLM #nn
Original post in Russian: https://yangx.top/Fourier_series/416
P.S. Fourier Series (@Fourier_series) is a great channel, get serialized! Fourier Transform is for the best!
#LLM #nn
arXiv.org
Breaking Quadratic Barriers: A Non-Attention LLM for Ultra-Long...
We present a novel non attention based architecture for large language models (LLMs) that efficiently handles very long context windows, on the order of hundreds of thousands to potentially...
Forwarded from Machinelearning
🚀 Парадигма меняется: Polaris выводит локальные модели на новый уровень
Polaris — это набор простых, но мощных приёмов, который позволяет даже компактным LLM (4 B, 7 B) догнать и превзойти «тяжеловесов» на задачах рассуждения (открытая 4B модель превосходи Claude-4-Opus).
Вот как это работает и почему важно:
• Управление сложностью данных
– Генерируем несколько (например, 8) вариантов решения от базовой модели
– Оцениваем, какие примеры слишком простые (8/8) или слишком сложные (0/8), и убираем их
– Оставляем «умеренные» задачи с правильными решениями в 20–80 % случаев, чтобы быть ни слишком лёгкими, ни слишком сложными
• Разнообразие «прогонов» (rollout-ов)
– Мы запускаем модель несколько раз на одной и той же задаче и смотрим, как меняются её рассуждения: одни и те же входные данные, но разные «пути» к решению.
– Считаем, насколько разнообразны эти пути (т. е. их «энтропия»): если модели всё время идут по одной линии, новых идей не появляется; если слишком хаотично — рассуждения неустойчивы.
– Задаём начальную “температуру” генерации там, где баланс между стабильностью и разнообразием оптимален, а затем постепенно её повышаем, чтобы модель не застревала на одних и тех же шаблонах и могла исследовать новые, более креативные ходы.
• “Train-short, generate-long”
– Во время RL-обучения используем короткие цепочки рассуждений (короткие CoT) для экономии ресурсов
– На inference увеличиваем длину CoT, чтобы получить более детальные и понятные объяснения без накрутки стоимости обучения
• Динамическое обновление датасета
– По мере роста точности удаляем примеры с accuracy > 90 %, чтобы не «портить» модель слишком лёгкими задачами
– Поддерживаем постоянный вызов модели на её пределе возможностей
• Улучшенная reward-функция
– Комбинируем стандартный RL-reward с бонусами за разнообразие и глубину рассуждений
– Это позволяет модели учиться не только давать правильный ответ, но и объяснять логику своих решений
Преимущества Polaris
• Благодаря Polaris даже компактные LLM (4 B и 7 B) достигают и даже «тяжеловесов» (32 B–235 B) на AIME, MATH и GPQA
• Обучение на доступных GPU уровня consumer-grade — до 10× экономии ресурсов и затрат по сравнению с традиционными RL-пайплайнами
• Полный открытый стек: исходники, подборка данных и веса
• Простота и модульность: готовый к использованию фреймворк для быстрого внедрения и масштабирования без дорогостоящей инфраструктуры
Polaris доказывает, что качество данных и грамотная настройка RL-процесса важнее просто «больших моделей». С ним вы получите продвинутую reasoning-LLM, которую можно запустить локально и масштабировать везде, где есть обычная GPU.
▪Blog post: https://hkunlp.github.io/blog/2025/Polaris
▪Model: https://huggingface.co/POLARIS-Project
▪Code: https://github.com/ChenxinAn-fdu/POLARIS
▪Notion: https://honorable-payment-890.notion.site/POLARIS-A-POst-training-recipe-for-scaling-reinforcement-Learning-on-Advanced-ReasonIng-modelS-1dfa954ff7c38094923ec7772bf447a1
@ai_machinelearning_big_data
#ml #ai • #Polaris #PostTraining #ReinforcementLearning #LLM
Polaris — это набор простых, но мощных приёмов, который позволяет даже компактным LLM (4 B, 7 B) догнать и превзойти «тяжеловесов» на задачах рассуждения (открытая 4B модель превосходи Claude-4-Opus).
Вот как это работает и почему важно:
• Управление сложностью данных
– Генерируем несколько (например, 8) вариантов решения от базовой модели
– Оцениваем, какие примеры слишком простые (8/8) или слишком сложные (0/8), и убираем их
– Оставляем «умеренные» задачи с правильными решениями в 20–80 % случаев, чтобы быть ни слишком лёгкими, ни слишком сложными
• Разнообразие «прогонов» (rollout-ов)
– Мы запускаем модель несколько раз на одной и той же задаче и смотрим, как меняются её рассуждения: одни и те же входные данные, но разные «пути» к решению.
– Считаем, насколько разнообразны эти пути (т. е. их «энтропия»): если модели всё время идут по одной линии, новых идей не появляется; если слишком хаотично — рассуждения неустойчивы.
– Задаём начальную “температуру” генерации там, где баланс между стабильностью и разнообразием оптимален, а затем постепенно её повышаем, чтобы модель не застревала на одних и тех же шаблонах и могла исследовать новые, более креативные ходы.
• “Train-short, generate-long”
– Во время RL-обучения используем короткие цепочки рассуждений (короткие CoT) для экономии ресурсов
– На inference увеличиваем длину CoT, чтобы получить более детальные и понятные объяснения без накрутки стоимости обучения
• Динамическое обновление датасета
– По мере роста точности удаляем примеры с accuracy > 90 %, чтобы не «портить» модель слишком лёгкими задачами
– Поддерживаем постоянный вызов модели на её пределе возможностей
• Улучшенная reward-функция
– Комбинируем стандартный RL-reward с бонусами за разнообразие и глубину рассуждений
– Это позволяет модели учиться не только давать правильный ответ, но и объяснять логику своих решений
Преимущества Polaris
• Благодаря Polaris даже компактные LLM (4 B и 7 B) достигают и даже «тяжеловесов» (32 B–235 B) на AIME, MATH и GPQA
• Обучение на доступных GPU уровня consumer-grade — до 10× экономии ресурсов и затрат по сравнению с традиционными RL-пайплайнами
• Полный открытый стек: исходники, подборка данных и веса
• Простота и модульность: готовый к использованию фреймворк для быстрого внедрения и масштабирования без дорогостоящей инфраструктуры
Polaris доказывает, что качество данных и грамотная настройка RL-процесса важнее просто «больших моделей». С ним вы получите продвинутую reasoning-LLM, которую можно запустить локально и масштабировать везде, где есть обычная GPU.
▪Blog post: https://hkunlp.github.io/blog/2025/Polaris
▪Model: https://huggingface.co/POLARIS-Project
▪Code: https://github.com/ChenxinAn-fdu/POLARIS
▪Notion: https://honorable-payment-890.notion.site/POLARIS-A-POst-training-recipe-for-scaling-reinforcement-Learning-on-Advanced-ReasonIng-modelS-1dfa954ff7c38094923ec7772bf447a1
@ai_machinelearning_big_data
#ml #ai • #Polaris #PostTraining #ReinforcementLearning #LLM
🔥10👍3❤2
Forwarded from Machinelearning
Пока одни восхищаются способностью ИИ писать код по текстовому описанию, в компании Марка Цукерберга решили устроить ему настоящее испытание на профессионализм и создали «The Automated LLM Speedrunning Benchmark» — полигон, где нейросетям предлагается не просто написать что-то с нуля, а воспроизвести и улучшить уже существующий код.
В качестве задачи был взят реальный проект NanoGPT, где сообщество энтузиастов соревнуется в максимальном ускорении обучения GPT-2, небольшой языковой модели. Цель - не просто скопировать, а понять и применить конкретную оптимизацию, которую до этого внедрил человек.
ИИ-агенту дают исходный скрипт предыдущего рекордсмена и подсказку одного из 3 уровней: от псевдокода с описанием изменений до полноценной мини-статьи, объясняющей суть улучшения. Агент, получив эти данные, должен внести правки в код так, чтобы приблизиться к скорости обучения следующего рекордсмена.
Эффективность мерили метрикой FSR (Fraction of Speedup Recovered), это доля восстановленного ускорения. Если человек ускорил процесс на 10 минут, а ИИ смог добиться ускорения в 5 минут, его результат — 50% FSR. Такая система позволяет оценить не абстрактные способности модели, а ее умение работать с конкретными, практическими задачами по оптимизации.
Итоги оказались, мягко говоря, отрезвляющими. Даже топовые модели (Claude 3.7 Sonnet и Gemini 2.5 Pro), показали очень скромные результаты.
С лучшими подсказками (псевдокод и детальное описание) самые успешные агенты с трудом смогли воспроизвести хотя бы 40% от прироста производительности, достигнутого человеком. Без подсказок их производительность была и вовсе близка к нулю.
Разбор полетов бенчмарка показал, что ИИ-агенты часто генерируют либо просто неработающий код с ошибками времени выполнения, либо код, который компилируется, но не дает никакого прироста скорости, а иногда даже замедляет процесс.
Авторы не просто опубликовали статью, а выложили весь фреймворк в открытый доступ, так что любой желающий может самостоятельно погонять практически любые модели.
В основе фреймворка лежит гибкий агентский каркас, который имитирует рабочий процесс исследователя: генерация идеи, реализация в коде, запуск эксперимента и анализ результатов.
Каждая итерация ИИ-агента аккуратно сохраняется в отдельную версию, создавая полную историю всех правок, от удачных до провальных.
Установка максимально проста, а для тех, кто хочет воспроизвести эксперименты из статьи, авторы приложили готовые скрипты. Также можно легко добавить и протестировать другие модели, просто создав для них конфиг или дать ИИ другую задачу, не связанную с NanoGPT - определять кастомные таски тоже можно.
@ai_machinelearning_big_data
#AI #ML #LLM #Benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥2
Forwarded from Machinelearning
Исследователи из из Гонконгского университета и инженеры Alibaba научили LLM генерировать семантически разные ответы, заставляя их «думать» в ортогональных направлениях.
Наверняка каждый, кто работает с LLM, сталкивался с их любовью к самоповторам. Запрашиваешь несколько вариантов решения, а получаешь одну и ту же мысль, просто перефразированную.
Стандартные подходы к декодированию,
temperature sampling
или diverse beam search
, создают лишь лексическое разнообразие, но пасуют, когда требуется семантическое. Это серьезная проблема для Best-of-N или RLHF. Ведь без по-настоящему разных идей и подходов к решению задачи эти методы теряют свою силу: выбирать лучший вариант не из чего, а обучать модель на однотипных примерах неэффективно.Решение предложили в методе SemDiD (Semantic-guided Diverse Decoding). Его суть, если кратко, перестать играть с токенами на поверхности и начать управлять генерацией напрямую в пространстве эмбеддингов.
Сначала, на старте, он принудительно направляет разные группы beams по ортогональным векторам в семантическом пространстве. Грубо говоря, это как дать команду разным поисковым группам двигаться строго на север, юг и запад, чтобы они гарантированно разошлись.
По мере генерации, когда жесткие директивы могут стать неоптимальными, включается второй механизм -
inter-group repulsion
. Он просто следит, чтобы смысловые траектории ответов не сближались, сохраняя их уникальность до самого конца.Но как, гоняясь за разнообразием, не получить на выходе бессвязный бред?
SemDiD подходит к контролю качества уникально. Он не пытается слепо максимизировать вероятность последовательности, а использует ее лишь как нижнюю границу, чтобы отсечь совсем уж плохие варианты.
Кроме того, алгоритм корректирует системные искажения, когда вероятность токенов искусственно завышается в зависимости от их позиции в тексте.
Для баланса между качеством и разнообразием используется адаптивный механизм на основе гармонического среднего, который в каждый момент времени уделяет больше внимания той метрике, которая проседает.
На бенчмарках для Best-of-N, от MMLU-Pro+ до GSM8K, SemDiD увеличивает покрытие (шанс найти верный ответ) на 1.4%-5.2% по сравнению с аналогами.
Генерируя для GRPO или RLOO семантически богатые наборы ответов, SemDiD предоставляет им более качественный материал для обучения. Это ускоряет сходимость на 15% и повышает финальную точность моделей.
@ai_machinelearning_big_data
#AI #ML #LLM #SemDiD
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥10👍5❤4
Forwarded from Китай.AI
🔥 MemOS: революция в управлении памятью для ИИ от китайских разработчиков
Китайские исследователи представили MemOS — первую операционную систему для управления долговременной памятью у больших языковых моделей. Система превзошла решения OpenAI по ключевым метрикам до 159%!
🔍 Почему это важно?
Большинство ИИ сегодня «страдают склерозом» — не сохраняют контекст между сессиями. MemOS решает эту проблему, превращая ИИ из генератора текстов в полноценного «цифрового коллегу».
🌟 Ключевые преимущества:
• Повышение точности на
• Снижение затрат токенов на
• Рост производительности в тестах временной логики на
🧠 Как это работает?
Система использует три уровня памяти:
1. Явная память (заметки, факты)
2. Активная память (текущий контекст)
3. Параметрическая память (глубокие знания модели)
💼 Применение:
• Персональные ассистенты с историей взаимодействий
• Научные исследования с долгосрочным анализом данных
• Финансы и юриспруденция с проверяемыми источниками
🛠 Технические детали:
Архитектура включает:
- Memory API для управления воспоминаниями
- MemScheduler для прогнозирования нужных фрагментов
- MemCube — стандартизированные блоки памяти
Сайт проекта | GitHub
Проект уже поддержан ведущими университетами Китая и корпорациями вроде China Telecom.
#КитайскийИИ #КитайAI #LLM #MemOS
Китайские исследователи представили MemOS — первую операционную систему для управления долговременной памятью у больших языковых моделей. Система превзошла решения OpenAI по ключевым метрикам до 159%!
🔍 Почему это важно?
Большинство ИИ сегодня «страдают склерозом» — не сохраняют контекст между сессиями. MemOS решает эту проблему, превращая ИИ из генератора текстов в полноценного «цифрового коллегу».
🌟 Ключевые преимущества:
• Повышение точности на
38.97%
vs OpenAI• Снижение затрат токенов на
60.95%
• Рост производительности в тестах временной логики на
159%
🧠 Как это работает?
Система использует три уровня памяти:
1. Явная память (заметки, факты)
2. Активная память (текущий контекст)
3. Параметрическая память (глубокие знания модели)
💼 Применение:
• Персональные ассистенты с историей взаимодействий
• Научные исследования с долгосрочным анализом данных
• Финансы и юриспруденция с проверяемыми источниками
🛠 Технические детали:
Архитектура включает:
- Memory API для управления воспоминаниями
- MemScheduler для прогнозирования нужных фрагментов
- MemCube — стандартизированные блоки памяти
Сайт проекта | GitHub
Проект уже поддержан ведущими университетами Китая и корпорациями вроде China Telecom.
#КитайскийИИ #КитайAI #LLM #MemOS
GitHub
GitHub - MemTensor/MemOS: MemOS (Preview) | Intelligence Begins with Memory
MemOS (Preview) | Intelligence Begins with Memory. Contribute to MemTensor/MemOS development by creating an account on GitHub.
👍5
Forwarded from Machinelearning
Размер — 1 триллион параметров, при этом:
- 65.8% на SWE-bench Verified, против 50.2% у Claude Sonnet 4 и 40.8% у GPT-4.1
- Лучшие результаты среди открытых моделей по кодингу, математике и агентным задачам
- Архитектура MoE на базе DeepSeek V3, 1 трлн параметров, 32B активны.
Также доступна через API:
- $0.15 за миллион входных токенов (при попадании в кэш)
- $0.60 за миллион входных токенов (если кэш не сработал)
- $2.50 за миллион выходных токенов
Почти в 5 раз дешевле, чем Claude 4 Sonnet и Gemini 2.5 Pro!
@ai_machinelearning_big_data
#kimi #china #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8❤5👍4
Infinite personalization is already on its way.
Gemini offers to create materials in expanded media formats (website, infographic, podcast) based on research.
That is, based on research findings about fundamental topics like teeth cleaning, you could soon ask an LLM to create a phone app reminding people about the importance of using an irrigator and dental flossing—complete with comics and fairy-tale characters for kids, of course.
#LLM #infinitepersonalization
Gemini offers to create materials in expanded media formats (website, infographic, podcast) based on research.
That is, based on research findings about fundamental topics like teeth cleaning, you could soon ask an LLM to create a phone app reminding people about the importance of using an irrigator and dental flossing—complete with comics and fairy-tale characters for kids, of course.
#LLM #infinitepersonalization
Forwarded from Анализ данных (Data analysis)
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
Попробовать бесплатно можно:
🟡 Через чат: ttps://chat.qwen.ai/)
🟡 GitHub link: https://github.com/QwenLM/qwen-code
🟡 Blog:https://qwenlm.github.io/blog/qwen3-coder/
🟡 Model: https://hf.co/Qwen/Qwen3-Coder-480B-A35B-Instruct
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
Попробовать бесплатно можно:
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥4❤1