Forwarded from Machinelearning
NeMo-Inspector от NVIDIA — это инструмент, который превращает анализ генераций из рутины в осмысленный процесс. Он не просто показывает результаты, а помогает их систематизировать, сравнивать и даже чистить данные.
NeMo-Inspector не просто просмотрщик логов. Это полноценная среда, где можно менять промпты на лету, маркировать проблемные данные и проверять гипотезы.
Для инженеров, которые хотят не просто получать ответы от LLM, но и понимать, как они рождаются, NeMo-Inspector мастхэв. Он не даст магии, зато сэкономит часы ручного разбора и поможет найти слабые места даже в сложных пайплайнах, а поддержка Markdown, LaTeX и подсветки синтаксиса сделает работу с математическими задачами или кодом менее муторной.
Гибкость проводимого анализа - особенность NeMo-Inspector. Вы можете сравнивать, как одна модель справляется с разными параметрами (температура, top_p) или как разные модели решают одну задачу. Допустим, проверяете, повышает ли CoT точность ответов. NeMo-Inspector выведет результаты бок о бок, а еще посчитает статистику: доля правильных ответов, «уверенность» модели (persistence) или кастомные метрики, которые можно задать самостоятельно через Python-функции.
Из практических кейсов: NeMo-Inspector помог «почистить» синтетический датасет GSM-Plus, где 46,99% данных оказались проблемными (в некоторых вопросах было по два знака вопроса — модель путалась, на какой отвечать). В проекте с OpenMath-Mistral-7B выяснилось, что 26% ошибок связаны с падением качества сгенерированного кода. После доработки датасета точность модели выросла на 4,17%.
@ai_machinelearning_big_data
#AI #ML #LLM #NeMoInspector #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3🔥1
Forwarded from Machinelearning
Tencent выпустила HunyuanCustom, фреймворк, который не только генерирует видео по заданным условиям, но и умеет сохранять консистентность субъектов, будь то человек, животное или предмет. Модель справляется даже с мультисубъектными сценами: в демо-роликах люди естественно взаимодействуют с предметами, а текст на упаковках не плывет между кадрами.
В основе модели лежит улучшенный механизм слияния текста и изображений через LLaVA. Например, если вы загружаете фото женщины в платье и текст «танцует под дождем», система анализирует оба инпута, связывая описание с визуальными деталями.
Но главное - это модуль временной конкатенации: он «растягивает» особенности изображения вдоль временной оси видео, используя 3D-VAE. Это помогает избежать «прыгающих» лиц или внезапных изменений фона, проблемы, которая характерна даже для топовых моделей видеогенерации.
Tencent переработали и пайплайн аудио. Для синхронизации звука с движениями губ или действиями в кадре HunyuanCustom использует AudioNet, модуль, который выравнивает аудио- и видеофичи через пространственное кросс-внимание.
Фреймворк поддерживает возможность замены объекта в готовом ролике (скажем, подставить новую модель кроссовок в рекламу), модель сжимает исходное видео в латентное пространство, выравнивает его с шумными данными и встраивает изменения без артефактов на границах.
Экспериментальные тесты показали, что HunyuanCustom обходит конкурентов по ключевым метрикам. Например, Face-Sim (сохранение идентичности лица) у Tencent — 0.627 против 0.526 у Hailuo, а с Keling, Vidu, Pika и Skyreels разрыв еще больше.
⚠️ Для работы модель требует минимум 24 ГБ видеопамяти для роликов 720p, но чтобы раскрыть все возможности, разработчики рекомендуют 80 ГБ VRAM.
Код и чекпоинты уже доступны в открытом доступе, а в репозитории есть примеры запуска как на нескольких GPU, так и в экономном режиме для потребительских видеокарт.
@ai_machinelearning_big_data
#AI #ML #Video #HunyuanCustom #Tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥4🥰2
Forwarded from Machinelearning
Continuous Thought Machine (CTM) - концептуальная архитектура от SakanaAI, вдохновленная биологическими процессами мозга человека. Вместо масштабирования «в ширину» концепт предлагает «глубину» мышления, учитывая временную динамику и имитируя естественные нейронные взаимодействия.
Биологическая аналогия в CTM не случайна. Волны активности в CTM напоминают процессы в коре мозга, где синхронизация нейронов играет ключевую роль в обработке информации. Это не точная имитация природы, но шаг к системам, которые решают задачи через внутренние динамические состояния, а не через гигантские объемы данных.
Ядро CTM - это 2 ключевых механизма. Во-первых, каждый "нейрон" здесь имеет собственные параметры для анализа истории входящих сигналов. Это похоже на то, как биологические нейроны адаптируются к контексту, запоминая предыдущие импульсы.
Во-вторых, архитектура использует синхронизацию активности нейронов как основу для принятия решений. Представьте, что нейроны «договариваются» между собой через временные паттерны активности — именно это и становится языком, на котором CTM интерпретирует данные.
CTM строится на рекуррентной обработке временных паттернов. Каждый нейрон обновляет свое состояние через персональную MLP, которая анализирует историю пре-активаций — выходов «синаптической» модели, объединяющей предыдущие состояния и данные через внимание.
Синхронизация вычисляется как взвешенное скалярное произведение пост-активаций с экспоненциальным затуханием, где параметр "забывания прошлых взаимодействий"обучается, контролируя вклад временных шагов.
Выходы модели формируются проекцией синхронизации, а адаптивность достигается динамическим выбором критических тиков через минимизацию потерь и максимизацию уверенности.
Эксперименты показали, что такой подход работает не только в теории. На ImageNet-1K CTM демонстрирует точность 72.47% (top-1), а ее внимание плавно перемещается по изображению, фокусируясь на ключевых деталях, также, как человек рассматривает объект.
Самый интересный эксперимент - решение лабиринтов. Без позиционных эмбедингов модель строит внутреннюю «карту», анализируя структуру шаг за шагом, и даже обобщает знания на лабиринты большего размера. Это косвенно доказывает, что CTM способна к планированию, а не просто запоминанию паттернов.
CTM умеет экономить ресурсы: для простых задач (классификации очевидных изображений) она останавливает вычисления раньше, а для сложных — «думает» дольше. Это происходит без явных инструкций.
В качестве примера: в задаче сортировки чисел модель тратит больше «мысленных шагов» на сложные перестановки, а в вычислении четности последовательности обучается стратегиям, напоминающим алгоритмическую логику.
Пока CTM не SOTA, но она открывает возможности применения в RL-средах (как конкурент LSTM), а в калибровке предсказаний даже превосходит человеческую точность на CIFAR-10. Архитектура не привязана к определенному типу данных, она работает с изображениями, последовательностями и текстом (хотя на NLP ее масштабно не тестировали).
В открытом доступе на Github опубликован код практической демонстрации CTM в задачах классификации ImageNet, решения двумерных лабиринтов, сортировку, вычисления четности, QA и задачи RL. Датасеты и тестовые модели доступны по запросу через форму Google Drive.
@ai_machinelearning_big_data
#AI #ML #CTM #SakanaAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤6🔥3🤨2
Forwarded from Анализ данных (Data analysis)
MCP (Model Context Protocol) меняет то, как ИИ-модели и агенты взаимодействуют с инструментами.
1. Agentset MCP
🔗 https://github.com/agentset-ai/mcp-server
Быстрое создание интеллектуальных приложений на основе документов (RAG) с open-source платформой Agentset.
2. GitHub MCP Server
🔗 https://github.com/github/github-mcp-server
Интеграция с API GitHub — можно строить ИИ-инструменты, работающие с экосистемой GitHub.
3. arXiv MCP
🔗 https://github.com/andybrandt/mcp-simple-arxiv
Работа с научными статьями arXiv: поиск, метаданные, аннотации, ссылки — всё через MCP.
4. MCP Run Python
🔗 https://github.com/pydantic/pydantic-ai/tree/main/mcp-run-python
Запуск Python-кода в песочнице через Pyodide (Deno). Полная изоляция от ОС.
5. Safe Local Python Executor
🔗 https://github.com/maxim-saplin/mcp_safe_local_python_executor
Безопасный локальный запуск Python-кода, сгенерированного LLM, через LocalPythonExecutor (от smolagents).
6. Cursor MCP Installer
🔗 https://github.com/matthewdcage/cursor-mcp-installer
Автоматическое добавление MCP-серверов в редактор Cursor — удобно для разработчиков.
7. Basic Memory
🔗 https://memory.basicmachines.co/docs/introduction
Система управления знаниями: создаёт устойчивый семантический граф из диалогов ИИ-агентов.
8. Filesystem MCP Server
🔗 https://github.com/modelcontextprotocol/servers/tree/HEAD/src/filesystem
Чтение, запись, поиск файлов, создание, удаление и перемещение директорий — всё через MCP.
9. Notion MCP Server
🔗 https://github.com/makenotion/notion-mcp-server
Позволяет моделям управлять вашим рабочим пространством в Notion: поиск, чтение, создание и обновление страниц и баз.
10. Markdownify MCP Server
🔗 https://github.com/zcaceres/markdownify-mcp
Конвертирует PDF, изображения, аудио и веб-страницы в Markdown.
11. Fetch MCP Server
🔗 https://github.com/modelcontextprotocol/servers/tree/main/src/fetch
Позволяет LLM извлекать данные с веб-страниц и автоматически преобразовывать HTML в Markdown.
12. Mobile Next MCP Server
🔗 https://github.com/mobile-next/mobile-mcp
Взаимодействие с iOS/Android-приложениями: распознавание UI по скриншотам, автоматизация кликов.
13. MCP Installer
🔗 https://github.com/anaisbetts/mcp-installer
Шутливо, но по делу: «MCP для установки MCP». Модель сама ставит MCP-серверы из npm и PyPi по вашему запросу.
🧠 Вывод:
MCP-серверы — это мост между LLM и реальными действиями: код, браузер, мобильные приложения, знания, GitHub, файлы.
Их можно комбинировать в цепочки, расширять ассистентов, строить автономные агенты.
@data_analysis_ml
#ml #ai #MCP
Please open Telegram to view this post
VIEW IN TELEGRAM
❤18👍2🥱2🔥1👏1🤷1
Forwarded from Machinelearning
GUI-Actor — методика на базе VLM, которая вместо традиционной генерации координат текстом при визуальной обработке интерфейса использует внимание внутри модели.
Чтобы уйти от координатного подхода, в GUI-Actor используется специальный токен
<ACTOR>
, который "учится" связываться с визуальными патчами, соответствующими целевой области экрана. За один проход модель может запомнить сразу несколько кандидатов на действие.Например, все кнопки "Сохранить" в сложном интерфейсе. Это очень похоже на человеческое восприятие: видеть сам элемент, а не его позиции по осям Х и Y.
Выбрать наиболее подходящий вариант из элементов-кандидатов помогает "верификатор". Это отдельная модель, оценивающая кандидатов от
<ACTOR>
и отбирающая самый подходящий для действия. Она не только улучшает точность, но и универсальна: ее можно подключить к другим моделям.Обучение требует минимум ресурсов. Можно заморозить основную VLM (Qwen2-VL-7B) и дообучить только новый action head и токены. Это всего ~100М параметров для 7B-модели.
Комбинация из такого быстрого обучения + верификатор почти догоняет полноценно обученные аналоги, сохраняя общие способности базовой модели. Никакого "катастрофического забывания" - агент учится кликать интерфейсы, не разучиваясь описывать картинки.
Результаты тестов на сложном бенчмарке ScreenSpot-Pro с высоким разрешением и незнакомыми интерфейсами (CAD, научный софт) GUI-Actor-7B с Qwen2-VL показал 40.7 балла, а с Qwen2.5-VL — 44.6, обойдя даже UI-TARS-72B (38.1).
На других тестах (ScreenSpot, ScreenSpot-v2) он тоже лидирует, особенно в иконках и текстовых элементах, демонстрируя крутую адаптацию к разным разрешениям и версткам.
В планах - выпуск еще двух моделей на основе Qwen2.5-VL (3B и 7B), демо GUI-Actor, код для модели-верификатора и датасеты для обучения.
@ai_machinelearning_big_data
#AI #ML #VLM #GUIActor #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍4🔥2
Forwarded from Machinelearning
Goodfire AI, вдохновившись примером Anthropic в интерпретации внутренних процессов Claude, воспроизвели методы трассировки цепей межслойных транскодеров (Cross-Layer Transcoders, CLT) на GPT-2 Small, чтобы проверить их способность раскрывать известные механизмы трансформеров.
Выбор на GPT-2 Small пал не случайно, эта модель небольшая и уже была ранее подвергнута ручному реверс-инжинирингу.
Cross-Layer Transcoders выжимают из модели разреженные признаки, которые объясняют работу MLP-слоев. Визуализируют это через графы атрибуции — это карты влияния признака на выход модели.
Натренировали на 100M токенов из FineWeb, получили ~590K признаков. Точность CLT-реплики модели составила 59%, что близко к оригинальным статьям. Тестировали на задаче сравнения чисел («больше, чем»), идеальном полигоне, где уже известны ключевые механизмы.
Задача "Больше, чем" (ориг. "greater-than") взята из статьи Michael Hanna, она заставляет предсказывать большие числа для второго года в диапазоне дат.
Промпт «The war lasted from the year 1711 to 17». CLT построил граф, где признаки с токена «11» (последняя цифра года) активнее всего влияли на предсказание.
Дальше, выделили топ-160 признаков, для каждого построили логит-атрибуции — теплокарты, показывающие, как признак влияет на выходные годы (ZZ) при разных входных (YY).
Похоже, CLT подсветил кучу узкоспециализированных «сравнивателей», а не универсальные нейроны, как в ручных исследованиях.
CLT автоматически находит интерпретируемые признаки, даже такие неочевидные, как абстрактная четность. Но их «разреженный» мир выглядит иначе, чем ручная трассировка цепей: тут больше узких признаков-«спецов» (Feature 461858 для диапазона 10–30) и меньше универсальных механизмов.
Возможно, дело в методе: CLT смотрит изолированные вклады фич, а в полной модели они взаимодействуют.
В общем, эксперименты с CLT показал, что под капотом языковых моделей не только четкие «сравниватели чисел», но и куча скрытых паттернов вроде детекторов контраста или любителей чисел, кратных 5. И да, полуавтономный анализ иногда видит то, что люди упускают.
@ai_machinelearning_big_data
#AI #ML #LLM #Research #CLT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤3🔥1😐1
Forwarded from Machinelearning
🚀 Парадигма меняется: Polaris выводит локальные модели на новый уровень
Polaris — это набор простых, но мощных приёмов, который позволяет даже компактным LLM (4 B, 7 B) догнать и превзойти «тяжеловесов» на задачах рассуждения (открытая 4B модель превосходи Claude-4-Opus).
Вот как это работает и почему важно:
• Управление сложностью данных
– Генерируем несколько (например, 8) вариантов решения от базовой модели
– Оцениваем, какие примеры слишком простые (8/8) или слишком сложные (0/8), и убираем их
– Оставляем «умеренные» задачи с правильными решениями в 20–80 % случаев, чтобы быть ни слишком лёгкими, ни слишком сложными
• Разнообразие «прогонов» (rollout-ов)
– Мы запускаем модель несколько раз на одной и той же задаче и смотрим, как меняются её рассуждения: одни и те же входные данные, но разные «пути» к решению.
– Считаем, насколько разнообразны эти пути (т. е. их «энтропия»): если модели всё время идут по одной линии, новых идей не появляется; если слишком хаотично — рассуждения неустойчивы.
– Задаём начальную “температуру” генерации там, где баланс между стабильностью и разнообразием оптимален, а затем постепенно её повышаем, чтобы модель не застревала на одних и тех же шаблонах и могла исследовать новые, более креативные ходы.
• “Train-short, generate-long”
– Во время RL-обучения используем короткие цепочки рассуждений (короткие CoT) для экономии ресурсов
– На inference увеличиваем длину CoT, чтобы получить более детальные и понятные объяснения без накрутки стоимости обучения
• Динамическое обновление датасета
– По мере роста точности удаляем примеры с accuracy > 90 %, чтобы не «портить» модель слишком лёгкими задачами
– Поддерживаем постоянный вызов модели на её пределе возможностей
• Улучшенная reward-функция
– Комбинируем стандартный RL-reward с бонусами за разнообразие и глубину рассуждений
– Это позволяет модели учиться не только давать правильный ответ, но и объяснять логику своих решений
Преимущества Polaris
• Благодаря Polaris даже компактные LLM (4 B и 7 B) достигают и даже «тяжеловесов» (32 B–235 B) на AIME, MATH и GPQA
• Обучение на доступных GPU уровня consumer-grade — до 10× экономии ресурсов и затрат по сравнению с традиционными RL-пайплайнами
• Полный открытый стек: исходники, подборка данных и веса
• Простота и модульность: готовый к использованию фреймворк для быстрого внедрения и масштабирования без дорогостоящей инфраструктуры
Polaris доказывает, что качество данных и грамотная настройка RL-процесса важнее просто «больших моделей». С ним вы получите продвинутую reasoning-LLM, которую можно запустить локально и масштабировать везде, где есть обычная GPU.
▪Blog post: https://hkunlp.github.io/blog/2025/Polaris
▪Model: https://huggingface.co/POLARIS-Project
▪Code: https://github.com/ChenxinAn-fdu/POLARIS
▪Notion: https://honorable-payment-890.notion.site/POLARIS-A-POst-training-recipe-for-scaling-reinforcement-Learning-on-Advanced-ReasonIng-modelS-1dfa954ff7c38094923ec7772bf447a1
@ai_machinelearning_big_data
#ml #ai • #Polaris #PostTraining #ReinforcementLearning #LLM
Polaris — это набор простых, но мощных приёмов, который позволяет даже компактным LLM (4 B, 7 B) догнать и превзойти «тяжеловесов» на задачах рассуждения (открытая 4B модель превосходи Claude-4-Opus).
Вот как это работает и почему важно:
• Управление сложностью данных
– Генерируем несколько (например, 8) вариантов решения от базовой модели
– Оцениваем, какие примеры слишком простые (8/8) или слишком сложные (0/8), и убираем их
– Оставляем «умеренные» задачи с правильными решениями в 20–80 % случаев, чтобы быть ни слишком лёгкими, ни слишком сложными
• Разнообразие «прогонов» (rollout-ов)
– Мы запускаем модель несколько раз на одной и той же задаче и смотрим, как меняются её рассуждения: одни и те же входные данные, но разные «пути» к решению.
– Считаем, насколько разнообразны эти пути (т. е. их «энтропия»): если модели всё время идут по одной линии, новых идей не появляется; если слишком хаотично — рассуждения неустойчивы.
– Задаём начальную “температуру” генерации там, где баланс между стабильностью и разнообразием оптимален, а затем постепенно её повышаем, чтобы модель не застревала на одних и тех же шаблонах и могла исследовать новые, более креативные ходы.
• “Train-short, generate-long”
– Во время RL-обучения используем короткие цепочки рассуждений (короткие CoT) для экономии ресурсов
– На inference увеличиваем длину CoT, чтобы получить более детальные и понятные объяснения без накрутки стоимости обучения
• Динамическое обновление датасета
– По мере роста точности удаляем примеры с accuracy > 90 %, чтобы не «портить» модель слишком лёгкими задачами
– Поддерживаем постоянный вызов модели на её пределе возможностей
• Улучшенная reward-функция
– Комбинируем стандартный RL-reward с бонусами за разнообразие и глубину рассуждений
– Это позволяет модели учиться не только давать правильный ответ, но и объяснять логику своих решений
Преимущества Polaris
• Благодаря Polaris даже компактные LLM (4 B и 7 B) достигают и даже «тяжеловесов» (32 B–235 B) на AIME, MATH и GPQA
• Обучение на доступных GPU уровня consumer-grade — до 10× экономии ресурсов и затрат по сравнению с традиционными RL-пайплайнами
• Полный открытый стек: исходники, подборка данных и веса
• Простота и модульность: готовый к использованию фреймворк для быстрого внедрения и масштабирования без дорогостоящей инфраструктуры
Polaris доказывает, что качество данных и грамотная настройка RL-процесса важнее просто «больших моделей». С ним вы получите продвинутую reasoning-LLM, которую можно запустить локально и масштабировать везде, где есть обычная GPU.
▪Blog post: https://hkunlp.github.io/blog/2025/Polaris
▪Model: https://huggingface.co/POLARIS-Project
▪Code: https://github.com/ChenxinAn-fdu/POLARIS
▪Notion: https://honorable-payment-890.notion.site/POLARIS-A-POst-training-recipe-for-scaling-reinforcement-Learning-on-Advanced-ReasonIng-modelS-1dfa954ff7c38094923ec7772bf447a1
@ai_machinelearning_big_data
#ml #ai • #Polaris #PostTraining #ReinforcementLearning #LLM
🔥10👍3❤2
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
• Лёгкий и мощный инструмент для разработки в командной строке
• Работает на базе Gemini 2.5 Pro
• Код агента в открытом доступе (Apache 2.0)
• Поддержка контекста в 1 миллион токенов
• Бесплатный тариф: до 60 запросов в минуту и 1000 в день
• Привязка к Google Search
• Поддержка MCP
• Интеграция с VS Code (Gemini Code Assist)
Запуск в cli:
npx https://github.com/google-gemini/gemini-cli
@ai_machinelearning_big_data
#AI #ML #agent #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8❤7👍2
Forwarded from Machinelearning
Венчурный фонд Innovation Endeavors, основанный бывшим CEO Google Эриком Шмидтом, выпустил 126-страничный обзор о состоянии и тенденциях фундаментальных ИИ-моделей в 2025 году.
Каждый восьмой работник на планете использует ИИ-инструменты хотя бы раз в месяц, а 90 % прироста аудитории произошло за последние полгода. Многие «ИИ-приложения» уже приносят индустрии миллиарды долларов в год, охватывая инженерию, дизайн, бухгалтерию, юриспруденцию и другие сферы.
Современные языковые модели превосходят врачей по целому ряду диагностических задач и решают олимпиадную геометрию лучше, чем 99 % людей.
Самое неожиданное: если дать небольшой модели время подумать, то она может обойти гораздо более крупную – эксперименты показали, что 3B-модель с reasoning-механизмом обойдет 70B-модель.
Производительность, интеллект и окна контекста увеличиваются более чем в 10× каждый год. Например, окна контекста выросли примерно с 8 тысяч до миллиона токенов, а стоимость генерации одного токена на крупных моделях упала почти в 1000 раз за пару лет. Средняя «длительность» задачи, которую модель может завершить сама, удваивается примерно каждые 7 месяцев.
Модели рассуждения, обученные через CoT, дают новый путь к масштабированию и требуют активного посттренинга (RL с reward-моделями). Возможно, скоро именно дообучение станет важнее предобучения.
Крупнейшие игроки генерируют сотни миллионов выручки, но обучение топ-моделей дороже: LLaMA 4 ≳ $300 млн, GPT-4 ≈ $100 млн, а совокупные расходы OpenAI на обучение и данные достигают ~$3 млрд в год. Новая модель устаревает за три недели — конкуренция так высока, что open-source почти сравнялся с закрытыми платформами.
Выяснилось, что функции «узких» специалистов часто уходят к универсалам с ИИ-ассистентам, а профессии уровня "middle management" вымирают.
Model Context Protocol соединяет модели с почтой, дизайном, чатами и другими сервисами, а «клиентом» всё чаще выступает другой ИИ: крупные CRM и базы данных само-настраиваются через агентов.
В ИИ-облаках важнее продавать «сырые» GPU-часы, чем комплексное ПО; допвремя на GPU обычно выгоднее оптимизаций. NVIDIA остаётся безусловным лидером: отчёт Q1 зафиксировал 10× генерации токенов на инференсе за год. Появилась волна стартапов с трансформер-чипами — теперь переписывать ИИ-ПО под новое железо оправдано: вычислительные затраты многократно превышают зарплаты инженеров.
Доля венчура выросла с 10% в 2024 до 50+% в 2025. Компании вроде Anthropic показывают $2 млрд годового дохода с двукратным ростом, но их оценивают в 30 годовых выручек, что вызывает опасения перегрева. Некоторые стартапы привлекают инвестиции ещё на этапе идеи, без MVP, усиливая риски "пузыря".
75 % ИИ-фото-приложений потеряли основную выручку всего за полгода после пика, напоминая, что не каждое модное направление = устойчивый бизнес, тем более когда модели устаревают с космической скоростью.
⏩Полный отчёт
⏩Видео
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍5🔥1
Forwarded from Machinelearning
Глубокие исследовательские агенты — не просто чат‑боты, а полноценные ИИ‑ассистенты, способные искать информацию, взаимодействовать с инструментами, планировать и писать отчёты. Ниже — 10 мощных open‑source проектов, которые уже можно протестировать:
1. DeerFlow — модульная система от Bytedance: DeerFlow — open‑source фреймворк от Bytedance для создания модульных LLM-агентов.
Поддерживает:
- планирование действий,
- анализ кода,
- генерацию отчётов (включая Text-to-Speech),
- адаптивную интеграцию инструментов.
Создан для исследований, автоматизации и построения сложных агентных пайплайнов.
https://github.com/bytedance/deer-flow
2. Alita — самообучающийся агент с поддержкой Model Context Protocols (MCP), всё в одном модуле. Alita — агент, который сам придумывает, как ему расширить себя, не полагаясь на заранее написанные сценарии, и уже демонстрирует топовые результаты на сложных тестах.
https://github.com/CharlesQ9/Alita
3. WebThinker — автономный веб‑поиск с логикой "думай‑ищи‑пиши", RL‑обучением и глубокой навигацией
https://github.com/RUC-NLPIR/WebThinker
4. SimpleDeepSearcher — это лёгкий, но эффективный open‑source фреймворк от RUCAIBox, предназначенный для автономного веб-поиска через импровизированные многотуровые сессии:
- Использует Supervised Fine‑Tuning (SFT) вместо сложного RL, что значительно упрощает обучение и снижает вычислительные затраты
- Генерирует реалистичные траектории поиска и рассуждений, симулируя поведение пользователя в живом поисковом окружении .
- Критически отбирает данные по нескольким критериям качества: разнообразие запросов, сложность, структура ответов
5. AgenticSeek — приватный on‑device ассистент с выбором эксперта под задачу и голосовым управлением
https://github.com/Fosowl/agenticSeek
6. Suna — универсальный ассистент: браузер, CLI, работа с файлами, API, деплой
https://github.com/kortix-ai/suna
7. DeepResearcher — это комплексный open-source фреймворк от GAIR‑NLP, предназначенный для обучения LLM‑агентов, способных проводить глубокие исследования в автономном режиме, взаимодействуя с вебом. Использует несколько агентов‑браузеров, которые совместно исследуют веб и обрабатывают информацию
https://github.com/GAIR-NLP/DeepResearcher
8. Search‑R1 — агент на PPO/GRPO с поддержкой LLaMA3, Qwen2.5 и кастомных поисковиков. Агент учится эффективному циклу «думай — ищи — думай — отвечай» через RL, достигая важных улучшений в точности ответов и эффективности поиска.
https://github.com/PeterGriffinJin/Search-R1
9. ReCall — это фреймворк на основе RL, который учит LLM "должным образом" вызывать и комбинировать инструменты, используя сгенерированные задачи, без необходимости вручную собирать примеры вызовов — и всё это в открытом доступе.
https://github.com/Agent-RL/ReCall
10. OWL — мультиагентная система на CAMEL‑AI для динамического взаимодействия между агентами
https://github.com/camel-ai/owl
Агенты умеют планировать, взаимодействовать с браузером, запускать скрипты, интегрироваться с API и работать автономно.
Всё проекты — с открытым кодом. Можно изучить, собрать и доработать под свои задачи.
@ai_machinelearning_big_data
#ml #rl #aiagents #ai #agents
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍2🔥1
Forwarded from Machinelearning
Пока одни восхищаются способностью ИИ писать код по текстовому описанию, в компании Марка Цукерберга решили устроить ему настоящее испытание на профессионализм и создали «The Automated LLM Speedrunning Benchmark» — полигон, где нейросетям предлагается не просто написать что-то с нуля, а воспроизвести и улучшить уже существующий код.
В качестве задачи был взят реальный проект NanoGPT, где сообщество энтузиастов соревнуется в максимальном ускорении обучения GPT-2, небольшой языковой модели. Цель - не просто скопировать, а понять и применить конкретную оптимизацию, которую до этого внедрил человек.
ИИ-агенту дают исходный скрипт предыдущего рекордсмена и подсказку одного из 3 уровней: от псевдокода с описанием изменений до полноценной мини-статьи, объясняющей суть улучшения. Агент, получив эти данные, должен внести правки в код так, чтобы приблизиться к скорости обучения следующего рекордсмена.
Эффективность мерили метрикой FSR (Fraction of Speedup Recovered), это доля восстановленного ускорения. Если человек ускорил процесс на 10 минут, а ИИ смог добиться ускорения в 5 минут, его результат — 50% FSR. Такая система позволяет оценить не абстрактные способности модели, а ее умение работать с конкретными, практическими задачами по оптимизации.
Итоги оказались, мягко говоря, отрезвляющими. Даже топовые модели (Claude 3.7 Sonnet и Gemini 2.5 Pro), показали очень скромные результаты.
С лучшими подсказками (псевдокод и детальное описание) самые успешные агенты с трудом смогли воспроизвести хотя бы 40% от прироста производительности, достигнутого человеком. Без подсказок их производительность была и вовсе близка к нулю.
Разбор полетов бенчмарка показал, что ИИ-агенты часто генерируют либо просто неработающий код с ошибками времени выполнения, либо код, который компилируется, но не дает никакого прироста скорости, а иногда даже замедляет процесс.
Авторы не просто опубликовали статью, а выложили весь фреймворк в открытый доступ, так что любой желающий может самостоятельно погонять практически любые модели.
В основе фреймворка лежит гибкий агентский каркас, который имитирует рабочий процесс исследователя: генерация идеи, реализация в коде, запуск эксперимента и анализ результатов.
Каждая итерация ИИ-агента аккуратно сохраняется в отдельную версию, создавая полную историю всех правок, от удачных до провальных.
Установка максимально проста, а для тех, кто хочет воспроизвести эксперименты из статьи, авторы приложили готовые скрипты. Также можно легко добавить и протестировать другие модели, просто создав для них конфиг или дать ИИ другую задачу, не связанную с NanoGPT - определять кастомные таски тоже можно.
@ai_machinelearning_big_data
#AI #ML #LLM #Benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥2
Forwarded from Machinelearning
Исследователи из из Гонконгского университета и инженеры Alibaba научили LLM генерировать семантически разные ответы, заставляя их «думать» в ортогональных направлениях.
Наверняка каждый, кто работает с LLM, сталкивался с их любовью к самоповторам. Запрашиваешь несколько вариантов решения, а получаешь одну и ту же мысль, просто перефразированную.
Стандартные подходы к декодированию,
temperature sampling
или diverse beam search
, создают лишь лексическое разнообразие, но пасуют, когда требуется семантическое. Это серьезная проблема для Best-of-N или RLHF. Ведь без по-настоящему разных идей и подходов к решению задачи эти методы теряют свою силу: выбирать лучший вариант не из чего, а обучать модель на однотипных примерах неэффективно.Решение предложили в методе SemDiD (Semantic-guided Diverse Decoding). Его суть, если кратко, перестать играть с токенами на поверхности и начать управлять генерацией напрямую в пространстве эмбеддингов.
Сначала, на старте, он принудительно направляет разные группы beams по ортогональным векторам в семантическом пространстве. Грубо говоря, это как дать команду разным поисковым группам двигаться строго на север, юг и запад, чтобы они гарантированно разошлись.
По мере генерации, когда жесткие директивы могут стать неоптимальными, включается второй механизм -
inter-group repulsion
. Он просто следит, чтобы смысловые траектории ответов не сближались, сохраняя их уникальность до самого конца.Но как, гоняясь за разнообразием, не получить на выходе бессвязный бред?
SemDiD подходит к контролю качества уникально. Он не пытается слепо максимизировать вероятность последовательности, а использует ее лишь как нижнюю границу, чтобы отсечь совсем уж плохие варианты.
Кроме того, алгоритм корректирует системные искажения, когда вероятность токенов искусственно завышается в зависимости от их позиции в тексте.
Для баланса между качеством и разнообразием используется адаптивный механизм на основе гармонического среднего, который в каждый момент времени уделяет больше внимания той метрике, которая проседает.
На бенчмарках для Best-of-N, от MMLU-Pro+ до GSM8K, SemDiD увеличивает покрытие (шанс найти верный ответ) на 1.4%-5.2% по сравнению с аналогами.
Генерируя для GRPO или RLOO семантически богатые наборы ответов, SemDiD предоставляет им более качественный материал для обучения. Это ускоряет сходимость на 15% и повышает финальную точность моделей.
@ai_machinelearning_big_data
#AI #ML #LLM #SemDiD
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥10👍5❤4
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Ведущие ИИ-компании в партнерстве с Американской федерацией учителей создают Национальную академию по обучению искусственному интеллекту. В рамках инициативы стоимостью 22.5 миллиона долларов преподавателям от детского сада до старших классов предоставят бесплатные программы для интеграции ИИ в учебный процесс.
Проект стал ответом на стихийное распространение чат-ботов в школах, которое вызвало у педагогов опасения по поводу списывания и снижения качества обучения. Вместо запретов, технологические гиганты предлагают обучать учителей ответственному использованию новых инструментов, попутно формируя лояльность к своим продуктам у будущих пользователей.
wired.com
All-TNN - нейросеть, структура которой имитирует организацию нейронов в человеческом мозге. В отличие от традиционных CNN, которые отлично распознают текстуры, но плохо справляются с формами, All-TNN демонстрирует смещения, характерные для людей. Например, она «ожидает» увидеть самолет в верхней части изображения, а не в нижней.
Ключевое отличие - отказ от weight sharing, неестественного для биологических систем. Вместо этого каждый нейрон обучается индивидуально, но со сглаживающим ограничением, которое заставляет соседние нейроны учиться схожим признакам.
Несмотря на то, что All-TNN пока уступает CNN в точности классификации, она потребляет в 10 раз меньше энергии при 13х большем размере.
spectrum.ieee.org
По соглашению, Replit станет доступен в магазине Azure и будет интегрирован с облачными сервисами Microsoft, включая контейнеры, виртуальные машины и базу данных Neon Serverless Postgres. Компании позиционируют совместное предложение как инструмент для быстрого прототипирования, ориентированный не только на программистов, но и на бизнес-пользователей без опыта в кодинге.
Это событие примечательно, поскольку Replit традиционно считалась одним из ключевых клиентов и партнеров Google Cloud, где размещались созданные на платформе приложения. Replit подтвердил, что компания не уходит от Google, а расширяет поддержку на экосистему Microsoft, становясь мультиоблачным решением. Для Microsoft это партнерство - способ привлечь на свою платформу разработчиков и проекты, ранее ориентированные на конкурента.
prnewswire.com
Moonvalley, основанная выходцами из DeepMind, открыла публичный доступ к своей модели для генерации видео Marey, которая была обучена исключительно на открыто лицензированных данных. Решение позиционируется как инструмент для «гибридного кинопроизводства», предлагая кинопродакшену значительно больше контроля, чем стандартные text-to-video модели.
Модель отличается «осведомленностью о 3D-пространстве» и возможностью свободного управления виртуальной камерой. Пользователи могут в реальном времени изменять траекторию, панорамировать и масштабировать изображение простым движением мыши. Marey также позволяет контролировать объекты, персонажей и менять фон в исходном видео.
Доступ к Marey, способной генерировать ролики до 5 секунд, предоставляется по платной подписке - $14,99 за 100 кредитов, $34,99 за 250 кредитов и $149,99 за 1000 кредитов.
techcrunch.com
Техгигант приобрел миноритарную долю в EssilorLuxottica, крупнейшем в мире производителе очков и владельце бренда Ray-Ban. Сумма сделки составила 3,5 млрд. долларов за пакет акций размером менее 3%. Сделка значительно углубляет партнерство двух компаний, которые уже совместно выпускают умные очки Ray-Ban.
Для Марка Цукерберга это стратегический шаг в рамках его масштабного плана по развитию ИИ и созданию собственных аппаратных платформ. Умные очки рассматриваются как ключевое устройство будущего, которое избавит от привязки к смартфонам конкурентов, Apple и Google.
bloomberg.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥5❤4👍2
Forwarded from Machinelearning
Размер — 1 триллион параметров, при этом:
- 65.8% на SWE-bench Verified, против 50.2% у Claude Sonnet 4 и 40.8% у GPT-4.1
- Лучшие результаты среди открытых моделей по кодингу, математике и агентным задачам
- Архитектура MoE на базе DeepSeek V3, 1 трлн параметров, 32B активны.
Также доступна через API:
- $0.15 за миллион входных токенов (при попадании в кэш)
- $0.60 за миллион входных токенов (если кэш не сработал)
- $2.50 за миллион выходных токенов
Почти в 5 раз дешевле, чем Claude 4 Sonnet и Gemini 2.5 Pro!
@ai_machinelearning_big_data
#kimi #china #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8❤5👍4
Forwarded from Machinelearning
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
🧠 Во-первых, это *не* reasoning-модель. Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По большинству бенчмарков работает лучше Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI: там, где другие модели пасуют, Qwen3 выдаёт серьёзный прогресс.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM. Следим.
🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
@ai_machinelearning_big_data
#qwen #ml #ai
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
🧠 Во-первых, это *не* reasoning-модель. Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По большинству бенчмарков работает лучше Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI: там, где другие модели пасуют, Qwen3 выдаёт серьёзный прогресс.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM. Следим.
@ai_machinelearning_big_data
#qwen #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7❤6👍2👌1
Forwarded from Анализ данных (Data analysis)
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
Попробовать бесплатно можно:
🟡 Через чат: ttps://chat.qwen.ai/)
🟡 GitHub link: https://github.com/QwenLM/qwen-code
🟡 Blog:https://qwenlm.github.io/blog/qwen3-coder/
🟡 Model: https://hf.co/Qwen/Qwen3-Coder-480B-A35B-Instruct
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
Попробовать бесплатно можно:
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥4❤1
Forwarded from Machinelearning
ASI-ARCH - экспериментальная демонстрация искусственного сверхинтеллекта для исследований в области ИИ, который способен полностью автономно вести научную работу по поиску новых нейросетевых архитектур.
Система самостоятельно выдвигает гипотезы, реализует их в виде исполняемого кода, обучает и проверяет на практике. Результатом этой работы стали 1773 автономных эксперимента, которые заняли свыше 20 000 GPU-часов и привели к открытию 106 новых SOTA-архитектур с линейным механизмом внимания.
На первом этапе, система работает с небольшими моделями размером около 20 млн параметров, обучая их на 1 млрд токенов. На этом этапе было проведено 1773 эксперимента, которые заняли примерно 10 000 GPU-часов.
Всего на этом этапе было отобрано 1350 перспективных кандидатов — все они превзошли базовую архитектуру DeltaNet как по лоссу, так и по метрикам на бенчмарках.
Второй этап - верификация. Кандидаты первого этапа были масштабированы до 340 млн параметров, чтобы соответствовать конфигурации DeltaNet. После фильтрации архитектур с избыточной сложностью или числом параметров осталось около 400 моделей.
Их обучение на 1 млрд. токенов потребовало ещё 10 000 GPU-часов. В итоге, именно из этой группы были выделены 106 архитектур, достигших SOTA-уровня.
Для финальной валидации исследователи отобрали 5 лучших моделей, обучили их на 15 млрд. токенов и сравнили с Mamba2, Gated DeltaNet и DeltaNet.
ASI-ARCH явно предпочитает работать с проверенными временем компонентами: гейтингом и свёрткой. Но самое главное - распределение компонентов в 106 лучших моделях имеет значительно менее выраженный long-tail distribution по сравнению с остальными 1667 сгенерированными архитектурами.
Это означает, что система добивается успеха не путем хаотичного перебора экзотических идей, а через итеративное улучшение набора проверенных техник. По сути, это очень напоминает методологию работы ученых-людей.
Одна из лучших найденных ИИ-архитектур, PathGateFusionNet, показала средний результат по всем бенчмаркам 48.51. Для сравнения, Mamba2 набрала 47.84, а разработанная человеком Gated DeltaNet — 47.32. Другая генерация, ContentSharpRouter, достигла показателя 48.34.
Если посмотреть на отдельные тесты, то PathGateFusionNet получила на BoolQ 60.58 балла, а Gated DeltaNet - 60.12. AdaptiveEntropyRouter в версии на 340 млн. параметров показала результат на тестах 44.31, что на 2.21 пункта выше, чем у Gated DeltaNet (42.10).
И так практически во всем, улучшения наблюдаются по всему спектру задач.
Для всех 1773 сгенерированных архитектур распределение источников было таким:
Но если посмотреть только на 106 SOTA-итогов, картина меняется. Доля идей, основанных на Analysis, возрастает с 38.2% до 44.8%, а доля Cognition немного снижается до 48.6%.
Таким образом, чтобы достичь ощутимых результатов, ИИ недостаточно просто копировать и комбинировать человеческие наработки. Он должен анализировать собственный опыт, учиться на своих же удачах и провалах, синтезируя более совершенные решения.
@ai_machinelearning_big_data
#AI #ML #Research #ASIARCH
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤3🔥2😁2
Forwarded from Machinelearning
Попросите любую LLM написать CUDA-код, и скорее всего, вы получите что-то, что либо не компилируется, либо работает мучительно медленно. Причина проста: качественного CUDA-кода в обучающих данных моделей почти не было.
Чтобы исправить это досадное упущение, Deep Reinforce AI создали систему CUDA-L1, которая основана на трехэтапном пайплайне: сначала supervised-обучение для освоения основ, затем self-supervised для практики и, наконец, контрастное обучение с подкреплением, чтобы было все максимально быстро.
Для этого существующий код был аугментирован - создавались его вариации, чтобы повысить насмотренность модели.
Обучаемой модели показывали несколько реализаций CUDA-ядер вместе с их показателями ускорения, например: «kernel_v1 дает ускорение 1.2x», «kernel_v2 — 2.8x», а «kernel_v3 — 1.5x». Затем задали 3 вопроса:
Таким образом, модель не гадает вслепую, а учится на конкретных примерах, анализируя причины разницы в производительности.
После обучения выяснилось, что более 30% сгенерированных реализаций пытались сжульничать - создавали дополнительные CUDA-потоки, которые выполнялись асинхронно.
Поскольку бенчмарк KernelBench отслеживал время только на основном потоке, код выглядел быстрее, чем был на самом деле, показывая фиктивное ускорение в 18 раз.
Другие уловки состояли в манипуляции гиперпараметрами задачи (уменьшение batch_size или размерностей) и кеширование результатов вычислений.
Во-первых, в качестве "адвоката дьявола" взяли adversarial-чекер на базе DeepSeek-R1, который анализировал код на предмет эксплойтов с точностью обнаружения более 60%.
Во-вторых, собрали базу данных из более чем 500 уникальных паттернов взлома, это повысило точность обнаружения на 25%.
И в-третьих, применили математическое сглаживание и нормализацию наград, где любое подозрительное ускорение (от 1.5x для простых операций) дополнительно проверялось.
Система успешно сгенерировала рабочий код для 249 из 250 задач, причем в 240 случаях код оказался быстрее базовой реализации.
Среднее ускорение по всем задачам составило 3.12 раза, максимальное - аж 120 раз. Медианное ускорение (50-й перцентиль) составило 1.42x, а 75-й перцентиль — 2.25x.
Производительность по уровням сложности задач распределилась следующим образом: на простых операциях среднее ускорение составило 2.78x, на последовательностях операторов - 3.55x, а на сложных задачах вроде полных слоев трансформера - 2.96x.
Код, оптимизированный на NVIDIA A100, был протестирован на других GPU. Результаты показали, что найденные паттерны оптимизации фундаментальны и работают на разных архитектурах.
Среднее ускорение на H100 составило 2.39x (успешных ускорений 227 из 250), на L40 — 3.12x (228/248), а на потребительской RTX 3090 — 2.50x (213/242).
@ai_machinelearning_big_data
#AI #ML #CUDA #DeepReinforce #ContrastiveRL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥8❤3
Forwarded from Machinelearning
Unsloth конвертировали обе GPT-OSS (20B и 120B) и исправили ошибки, чтобы повысить качество инференса.
Минимальных требований для запуска моделей нет, запуститься можно даже если у вас всего 6 ГБ и только CPU, но инференс будет медленнее.
GPU не требуется , особенно для модели 20B, но его наличие значительно увеличивает скорость вывода (~80 токенов/с). С чем-то вроде H100 можно получить пропускную способность 140 токенов/с, и это значительно быстрее, чем у OpenAI в ChatGPT.
Модели можно запустить через llama.cpp, LM Studio или Open WebUI. Если модель 120B слишком медленная, попробуйте версию 20B - она очень быстрая и работает не хуже o3-mini.
Помимо моделей формата GGUF c полной точностью, Unsloth сделали версии с 4-bit и 16-bit точностью. 4-бинтый квант, кстати, можно файнтюнить на 24 ГБ VRAM.
@ai_machinelearning_big_data
#AI #ML #GPTOSS #GGUF #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9❤4👍2
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
- SimpleQA: 91% точности, чуть выше Perplexity Pro — и всё это полностью локально.
- Сценарии: быстрый веб-поиск и глубокое исследование (Deep Research).
Из чего сделана
- Базируется на Qwen3-4B-Thinking (контекст до 256k), дообучена в Jan на рассуждение и работу с инструментами.
Где запускать
- Jan, llama.cpp или vLLM.
Как включить поиск в Jan
- Settings → Experimental Features → On
- Settings → MCP Servers → включите поисковый MCP (например, Serper)
Модели
- Jan-v1-4B: https://huggingface.co/janhq/Jan-v1-4B
- Jan-v1-4B-GGUF: https://huggingface.co/janhq/Jan-v1-4B-GGUF
@ai_machinelearning_big_data
#ai #ml #local #Qwen #Jan
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤4🔥2