ββODE DL paper with overview
This paper recieved award at #NeurIPS2018. Main idea: defining a deep residual network as a continuously evolving system & instead of updating the hidden units layer by layer, define their derivative with respect to depth instead.
ArXiV: https://arxiv.org/pdf/1806.07366.pdf
GitHub: https://github.com/rtqichen/torchdiffeq
Overview: https://rkevingibson.github.io/blog/neural-networks-as-ordinary-differential-equations/
#ODE #DL #NeurIPS
This paper recieved award at #NeurIPS2018. Main idea: defining a deep residual network as a continuously evolving system & instead of updating the hidden units layer by layer, define their derivative with respect to depth instead.
ArXiV: https://arxiv.org/pdf/1806.07366.pdf
GitHub: https://github.com/rtqichen/torchdiffeq
Overview: https://rkevingibson.github.io/blog/neural-networks-as-ordinary-differential-equations/
#ODE #DL #NeurIPS
Function-Space Distributions over Kernels
With a function-space approach to kernel learning helps to incorporate interpretable inductive biases, manage uncertainty, and discover rich representations of data.
ArXiV: https://arxiv.org/abs/1910.13565
#gaussianprocess #NeurIPS #NeurIPS2019 #FKL #kernellearning
With a function-space approach to kernel learning helps to incorporate interpretable inductive biases, manage uncertainty, and discover rich representations of data.
ArXiV: https://arxiv.org/abs/1910.13565
#gaussianprocess #NeurIPS #NeurIPS2019 #FKL #kernellearning
ββWhat we learned from NeurIPS 2019 data
x4 growth since 2014
21.6% acceptance rate
Takeaways:
1. No free-loader problem: Relatively few papers are submitted where none of the authors invited to participate in the review process accepted the invitation
2. Unclear how to rapidly filter papers prior to full review: Allowing for early desk rejects by ACs is unlikely to have a significant impact on reviewer load without producing inappropriate decisions. Likewise, the eagerness of reviewers to review a particular paper is not a strong signal, either.
3. No clear evidence that review quality as measured by length is lower for NeurIPS: NeurIPS is surprisingly not much different from other conferences of smaller sizes when it comes to review length.
4. Impact of engagement in rebuttal/discussion period: Overall engagement seemed to be higher than in 2018.
#Nips #NeurIPS #NIPS2019 #conference #meta
x4 growth since 2014
21.6% acceptance rate
Takeaways:
1. No free-loader problem: Relatively few papers are submitted where none of the authors invited to participate in the review process accepted the invitation
2. Unclear how to rapidly filter papers prior to full review: Allowing for early desk rejects by ACs is unlikely to have a significant impact on reviewer load without producing inappropriate decisions. Likewise, the eagerness of reviewers to review a particular paper is not a strong signal, either.
3. No clear evidence that review quality as measured by length is lower for NeurIPS: NeurIPS is surprisingly not much different from other conferences of smaller sizes when it comes to review length.
4. Impact of engagement in rebuttal/discussion period: Overall engagement seemed to be higher than in 2018.
#Nips #NeurIPS #NIPS2019 #conference #meta
NeurIPS slides and presentations link
Link: https://slideslive.com/neurips/
Brief paper overview videos: https://nips.cc/Conferences/2019/Videos
#NeurIPS #NIPS #NIPS2019
Link: https://slideslive.com/neurips/
Brief paper overview videos: https://nips.cc/Conferences/2019/Videos
#NeurIPS #NIPS #NIPS2019
SlidesLive
NeurIPS
Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conferenceβ¦
#NLP #News (by Sebastian Ruder):
* 2020 NLP wish lists
* #HuggingFace + #fastai
* #NeurIPS 2019
* #GPT2 things
* #ML Interviews
blog post: http://newsletter.ruder.io/archive/211277
* 2020 NLP wish lists
* #HuggingFace + #fastai
* #NeurIPS 2019
* #GPT2 things
* #ML Interviews
blog post: http://newsletter.ruder.io/archive/211277
ββFew-shot Video-to-Video Synthesis
it's the pytorch implementation for few-shot photorealistic video-to-video (vid2vid) translation.
it can be used for generating human motions from poses, synthesizing people talking from edge maps, or turning semantic label maps into photo-realistic videos.
the core of vid2vid translation is image-to-image translation.
blog post: https://nvlabs.github.io/few-shot-vid2vid/
paper: https://arxiv.org/abs/1910.12713
youtube: https://youtu.be/8AZBuyEuDqc
github: https://github.com/NVlabs/few-shot-vid2vid
#cv #nips #neurIPS #pattern #recognition #vid2vid #synthesis
it's the pytorch implementation for few-shot photorealistic video-to-video (vid2vid) translation.
it can be used for generating human motions from poses, synthesizing people talking from edge maps, or turning semantic label maps into photo-realistic videos.
the core of vid2vid translation is image-to-image translation.
blog post: https://nvlabs.github.io/few-shot-vid2vid/
paper: https://arxiv.org/abs/1910.12713
youtube: https://youtu.be/8AZBuyEuDqc
github: https://github.com/NVlabs/few-shot-vid2vid
#cv #nips #neurIPS #pattern #recognition #vid2vid #synthesis
β€1
Survey of machine-learning experimental methods at NeurIPS2019 and ICLR2020
Good thread about what ML scientists do experiments on their papers
twitter: https://twitter.com/deliprao/status/1235697595919421440
report: https://hal.archives-ouvertes.fr/hal-02447823/document
#Survey #NeurIPS #ICLR #Experiments #ml
Good thread about what ML scientists do experiments on their papers
twitter: https://twitter.com/deliprao/status/1235697595919421440
report: https://hal.archives-ouvertes.fr/hal-02447823/document
#Survey #NeurIPS #ICLR #Experiments #ml
Twitter
Delip Rao
Survey of #MachineLearning experimental methods (aka "how do ML folks do their experiments") at #NeurIPS2019 and #ICLR2020, a thread of results: