Forwarded from Machinelearning
Команда Fundamental AI Research (FAIR) компании Марка Цукерберга представила серию новых разработок: методики и модели, улучшающие компьютерное зрение, 3D-локализацию объектов и совместное обучение языковых агентов. Все модели, техотчеты, датасеты и код этих проектов уже доступны на платформах Hugging Face и GitHub.
Perception Encoder - новый виток развития в сфере обработки визуальной информации. Модель, обученная с помощью этой методики на масштабных данных, превосходит аналоги в задачах классификации изображений и видео, включая сложные сценарии — распознавание ската, зарывшегося в морское дно, или крошечной птицы на заднем плане снимка. Благодаря интеграции с LLM, Encoder улучшает ответы на визуальные вопросы, описание сцен и понимание пространственных отношений между объектами.
Для задач, требующих анализа видео и текста, Meta выпустила Perception Language Model (PLM). Ее обучали на 2,5 млн. новых аннотированных видеозаписей — это крупнейший датасет для понимания действий и контекста в динамике. PLM доступна в трёх вариантах (1, 3 и 8 млрд параметров). Дополнительный бонус — PLM-VideoBench, бенчмарк для оценки тонкого понимания сцен, который заполняет пробелы существующих тестов.
Как заставить робот найти красную чашку на столе или вазу возле телевизора? Locate 3D решает эту задачу через анализ 3D-точечных облаков и текстовых подсказок. Модель учитывает пространственные связи и контекст, отличая «вазу у TV» от «вазы на столе». В основе — трехэтапный пайплайн: предобработка данных, кодирование 3D-сцены и декодирование запроса. Для обучения использовали 130 тыс. аннотаций из ARKitScenes и ScanNet, что вдвое увеличило объём доступных данных для локализации объектов.
Dynamic Byte Latent Transformer - архитектура, которая работает на уровне байтов, а не токенов, что повышает устойчивость к ошибкам, ускоряет обработку и "отменяет" необходимость токенизации для масштабирования. На тесте CUTE модель показывает преимущество в +55 пунктов против традиционных подходов.
Совместное решение задач — следующий этап развития ИИ. Collaborative Reasoner — это фреймворк, где два агента ведут диалог, чтобы прийти к общему решению. Они могут спорить, аргументировать и согласовывать ответы на сложные вопросы. Для обучения используют синтетические диалоги, которые генерирует сама модель. Результаты впечатляют: на некоторых задачах совместная работа даёт прирост эффективности до 29% по сравнению с одиночным агентом.
@ai_machinelearning_big_data
#AI #ML #LLM #CV #NLP #FAIR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍4🔥2
Forwarded from Machinelearning
NVIDIA представила новый подход к обучению моделей для сложных математических задач, заняв первое место в конкурсе Kaggle AIMO-2.
Секрет — в огромном датасете OpenMathReasoning, который состоит из 540 тыс. уникальных задач с Art of Problem Solving, 3,2 млн. многошаговых решений (CoT) и 1,7 млн. примеров с интеграцией кода (TIR).
Для сравнения: это в разы больше, чем в популярных аналогах MATH и GSM8K. Все это дополнено 566 тыс. примеров для обучения генеративному выбору решений (GenSelect) — методу, который лучше, чем классическое голосование большинством.
OpenMathReasoning создавался тщательно и ответственно. Сначала задачи фильтровались через Qwen2.5-32B, чтобы убрать простые или дублирующие бенчмарки. Затем DeepSeek-R1 и QwQ-32B генерировали решения, а итеративная тренировка с жесткой фильтрацией улучшала качество. Например, код в TIR-решениях должен был не просто проверять шаги, а давать принципиально новые вычисления — вроде перебора вариантов или численного решения уравнений.
Модели OpenMath-Nemotron (1,5B–32B параметров), обученные на этом наборе данных показали SOTA-результаты. 14B-версия в режиме TIR решает 76,3% задач AIME24 против 65,8% у базового DeepSeek-R1. А с GenSelect, который анализирует 16 кандидатов за раз, точность взлетает до 90%. Даже 1,5B-модель с GenSelect обгоняет 32B-гиганты в отдельных тестах.
@ai_machinelearning_big_data
#AI #ML #Math #Dataset #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥3❤1
Forwarded from Machinelearning
Matrix3D — модель, предлагающая решение сразу нескольких задач в рамках единой архитектуры: оценку положения камер, предсказание глубины и генерацию новых ракурсов.
Всю эту красоту обеспечивает модифицированный диффузионный трансформер, который обрабатывает изображения, параметры камер и карты глубины как взаимосвязанные модальности. Он не только упрощает традиционный пайплайн (нет зависимостей от отдельных алгоритмов SfM или MVS), но и повышает точность за счет уникальной оптимизации.
Ключевая особенность Matrix3D — маскированное обучение, позаимствованное из методов MAE. Модель тренируется на частично заполненных данных: парах «изображение-поза» или «изображение-глубина». При этом модель учится «достраивать» недостающие модальности, что позволяет комбинировать входы и выходы во время инференса. Например, можно добавить карту глубины с физического датчика или сгенерировать новые ракурсы на основе всего двух изображений.
Результаты тестов с задачей оценки поз на датасете CO3D Matrix3D обходят специализированные методы (RayDiffusion): точность определения положения камеры достигает 96,3% против 92,4% у конкурентов.
В синтезе видов модель демонстрирует PSNR 20,45 против 19,22 у SyncDreamer, а в оценке глубины — AbsRel 0,036 против 0,064 у Metric3D. При этом Matrix3D не требует отдельных моделей для каждой задачи, все решается в рамках одной модели.
Практическая ценность модели — в ее адаптивности. Например, для 3D-реконструкции из одного кадра Matrix3D сначала генерирует недостающие ракурсы, оценивает их позы и глубину, а затем оптимизирует сцену через 3D Gaussian Splatting.
Для работы с несколькими кадрами без известных поз модель сама восстанавливает параметры камер, что раньше требовало отдельного этапа с COLMAP. Все это реализовано в репозитории с готовыми скриптами — от синтеза видов до полной реконструкции.
Конечно, есть нюансы: качество облаков точек пока уступает другим методам (GeoMVSNet). Но даже имеющиеся результаты достаточны для инициализации 3DGS, а главное — весь процесс занимает несколько минут на одной RTX 3090. Для сравнения: CAT3D, хотя и точнее в синтезе, требует 16х A100 и оптимизации под каждую сцену.
@ai_machinelearning_big_data
#AI #ML #Photogrammetry #Matrix3D #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥4❤1
Forwarded from Machinelearning
NeMo-Inspector от NVIDIA — это инструмент, который превращает анализ генераций из рутины в осмысленный процесс. Он не просто показывает результаты, а помогает их систематизировать, сравнивать и даже чистить данные.
NeMo-Inspector не просто просмотрщик логов. Это полноценная среда, где можно менять промпты на лету, маркировать проблемные данные и проверять гипотезы.
Для инженеров, которые хотят не просто получать ответы от LLM, но и понимать, как они рождаются, NeMo-Inspector мастхэв. Он не даст магии, зато сэкономит часы ручного разбора и поможет найти слабые места даже в сложных пайплайнах, а поддержка Markdown, LaTeX и подсветки синтаксиса сделает работу с математическими задачами или кодом менее муторной.
Гибкость проводимого анализа - особенность NeMo-Inspector. Вы можете сравнивать, как одна модель справляется с разными параметрами (температура, top_p) или как разные модели решают одну задачу. Допустим, проверяете, повышает ли CoT точность ответов. NeMo-Inspector выведет результаты бок о бок, а еще посчитает статистику: доля правильных ответов, «уверенность» модели (persistence) или кастомные метрики, которые можно задать самостоятельно через Python-функции.
Из практических кейсов: NeMo-Inspector помог «почистить» синтетический датасет GSM-Plus, где 46,99% данных оказались проблемными (в некоторых вопросах было по два знака вопроса — модель путалась, на какой отвечать). В проекте с OpenMath-Mistral-7B выяснилось, что 26% ошибок связаны с падением качества сгенерированного кода. После доработки датасета точность модели выросла на 4,17%.
@ai_machinelearning_big_data
#AI #ML #LLM #NeMoInspector #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3🔥1
Forwarded from Machinelearning
Tencent выпустила HunyuanCustom, фреймворк, который не только генерирует видео по заданным условиям, но и умеет сохранять консистентность субъектов, будь то человек, животное или предмет. Модель справляется даже с мультисубъектными сценами: в демо-роликах люди естественно взаимодействуют с предметами, а текст на упаковках не плывет между кадрами.
В основе модели лежит улучшенный механизм слияния текста и изображений через LLaVA. Например, если вы загружаете фото женщины в платье и текст «танцует под дождем», система анализирует оба инпута, связывая описание с визуальными деталями.
Но главное - это модуль временной конкатенации: он «растягивает» особенности изображения вдоль временной оси видео, используя 3D-VAE. Это помогает избежать «прыгающих» лиц или внезапных изменений фона, проблемы, которая характерна даже для топовых моделей видеогенерации.
Tencent переработали и пайплайн аудио. Для синхронизации звука с движениями губ или действиями в кадре HunyuanCustom использует AudioNet, модуль, который выравнивает аудио- и видеофичи через пространственное кросс-внимание.
Фреймворк поддерживает возможность замены объекта в готовом ролике (скажем, подставить новую модель кроссовок в рекламу), модель сжимает исходное видео в латентное пространство, выравнивает его с шумными данными и встраивает изменения без артефактов на границах.
Экспериментальные тесты показали, что HunyuanCustom обходит конкурентов по ключевым метрикам. Например, Face-Sim (сохранение идентичности лица) у Tencent — 0.627 против 0.526 у Hailuo, а с Keling, Vidu, Pika и Skyreels разрыв еще больше.
⚠️ Для работы модель требует минимум 24 ГБ видеопамяти для роликов 720p, но чтобы раскрыть все возможности, разработчики рекомендуют 80 ГБ VRAM.
Код и чекпоинты уже доступны в открытом доступе, а в репозитории есть примеры запуска как на нескольких GPU, так и в экономном режиме для потребительских видеокарт.
@ai_machinelearning_big_data
#AI #ML #Video #HunyuanCustom #Tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥4🥰2
Forwarded from Machinelearning
Continuous Thought Machine (CTM) - концептуальная архитектура от SakanaAI, вдохновленная биологическими процессами мозга человека. Вместо масштабирования «в ширину» концепт предлагает «глубину» мышления, учитывая временную динамику и имитируя естественные нейронные взаимодействия.
Биологическая аналогия в CTM не случайна. Волны активности в CTM напоминают процессы в коре мозга, где синхронизация нейронов играет ключевую роль в обработке информации. Это не точная имитация природы, но шаг к системам, которые решают задачи через внутренние динамические состояния, а не через гигантские объемы данных.
Ядро CTM - это 2 ключевых механизма. Во-первых, каждый "нейрон" здесь имеет собственные параметры для анализа истории входящих сигналов. Это похоже на то, как биологические нейроны адаптируются к контексту, запоминая предыдущие импульсы.
Во-вторых, архитектура использует синхронизацию активности нейронов как основу для принятия решений. Представьте, что нейроны «договариваются» между собой через временные паттерны активности — именно это и становится языком, на котором CTM интерпретирует данные.
CTM строится на рекуррентной обработке временных паттернов. Каждый нейрон обновляет свое состояние через персональную MLP, которая анализирует историю пре-активаций — выходов «синаптической» модели, объединяющей предыдущие состояния и данные через внимание.
Синхронизация вычисляется как взвешенное скалярное произведение пост-активаций с экспоненциальным затуханием, где параметр "забывания прошлых взаимодействий"обучается, контролируя вклад временных шагов.
Выходы модели формируются проекцией синхронизации, а адаптивность достигается динамическим выбором критических тиков через минимизацию потерь и максимизацию уверенности.
Эксперименты показали, что такой подход работает не только в теории. На ImageNet-1K CTM демонстрирует точность 72.47% (top-1), а ее внимание плавно перемещается по изображению, фокусируясь на ключевых деталях, также, как человек рассматривает объект.
Самый интересный эксперимент - решение лабиринтов. Без позиционных эмбедингов модель строит внутреннюю «карту», анализируя структуру шаг за шагом, и даже обобщает знания на лабиринты большего размера. Это косвенно доказывает, что CTM способна к планированию, а не просто запоминанию паттернов.
CTM умеет экономить ресурсы: для простых задач (классификации очевидных изображений) она останавливает вычисления раньше, а для сложных — «думает» дольше. Это происходит без явных инструкций.
В качестве примера: в задаче сортировки чисел модель тратит больше «мысленных шагов» на сложные перестановки, а в вычислении четности последовательности обучается стратегиям, напоминающим алгоритмическую логику.
Пока CTM не SOTA, но она открывает возможности применения в RL-средах (как конкурент LSTM), а в калибровке предсказаний даже превосходит человеческую точность на CIFAR-10. Архитектура не привязана к определенному типу данных, она работает с изображениями, последовательностями и текстом (хотя на NLP ее масштабно не тестировали).
В открытом доступе на Github опубликован код практической демонстрации CTM в задачах классификации ImageNet, решения двумерных лабиринтов, сортировку, вычисления четности, QA и задачи RL. Датасеты и тестовые модели доступны по запросу через форму Google Drive.
@ai_machinelearning_big_data
#AI #ML #CTM #SakanaAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤6🔥3🤨2
Forwarded from Анализ данных (Data analysis)
MCP (Model Context Protocol) меняет то, как ИИ-модели и агенты взаимодействуют с инструментами.
1. Agentset MCP
🔗 https://github.com/agentset-ai/mcp-server
Быстрое создание интеллектуальных приложений на основе документов (RAG) с open-source платформой Agentset.
2. GitHub MCP Server
🔗 https://github.com/github/github-mcp-server
Интеграция с API GitHub — можно строить ИИ-инструменты, работающие с экосистемой GitHub.
3. arXiv MCP
🔗 https://github.com/andybrandt/mcp-simple-arxiv
Работа с научными статьями arXiv: поиск, метаданные, аннотации, ссылки — всё через MCP.
4. MCP Run Python
🔗 https://github.com/pydantic/pydantic-ai/tree/main/mcp-run-python
Запуск Python-кода в песочнице через Pyodide (Deno). Полная изоляция от ОС.
5. Safe Local Python Executor
🔗 https://github.com/maxim-saplin/mcp_safe_local_python_executor
Безопасный локальный запуск Python-кода, сгенерированного LLM, через LocalPythonExecutor (от smolagents).
6. Cursor MCP Installer
🔗 https://github.com/matthewdcage/cursor-mcp-installer
Автоматическое добавление MCP-серверов в редактор Cursor — удобно для разработчиков.
7. Basic Memory
🔗 https://memory.basicmachines.co/docs/introduction
Система управления знаниями: создаёт устойчивый семантический граф из диалогов ИИ-агентов.
8. Filesystem MCP Server
🔗 https://github.com/modelcontextprotocol/servers/tree/HEAD/src/filesystem
Чтение, запись, поиск файлов, создание, удаление и перемещение директорий — всё через MCP.
9. Notion MCP Server
🔗 https://github.com/makenotion/notion-mcp-server
Позволяет моделям управлять вашим рабочим пространством в Notion: поиск, чтение, создание и обновление страниц и баз.
10. Markdownify MCP Server
🔗 https://github.com/zcaceres/markdownify-mcp
Конвертирует PDF, изображения, аудио и веб-страницы в Markdown.
11. Fetch MCP Server
🔗 https://github.com/modelcontextprotocol/servers/tree/main/src/fetch
Позволяет LLM извлекать данные с веб-страниц и автоматически преобразовывать HTML в Markdown.
12. Mobile Next MCP Server
🔗 https://github.com/mobile-next/mobile-mcp
Взаимодействие с iOS/Android-приложениями: распознавание UI по скриншотам, автоматизация кликов.
13. MCP Installer
🔗 https://github.com/anaisbetts/mcp-installer
Шутливо, но по делу: «MCP для установки MCP». Модель сама ставит MCP-серверы из npm и PyPi по вашему запросу.
🧠 Вывод:
MCP-серверы — это мост между LLM и реальными действиями: код, браузер, мобильные приложения, знания, GitHub, файлы.
Их можно комбинировать в цепочки, расширять ассистентов, строить автономные агенты.
@data_analysis_ml
#ml #ai #MCP
Please open Telegram to view this post
VIEW IN TELEGRAM
❤18👍2🥱2🔥1👏1🤷1
Forwarded from Machinelearning
GUI-Actor — методика на базе VLM, которая вместо традиционной генерации координат текстом при визуальной обработке интерфейса использует внимание внутри модели.
Чтобы уйти от координатного подхода, в GUI-Actor используется специальный токен
<ACTOR>
, который "учится" связываться с визуальными патчами, соответствующими целевой области экрана. За один проход модель может запомнить сразу несколько кандидатов на действие.Например, все кнопки "Сохранить" в сложном интерфейсе. Это очень похоже на человеческое восприятие: видеть сам элемент, а не его позиции по осям Х и Y.
Выбрать наиболее подходящий вариант из элементов-кандидатов помогает "верификатор". Это отдельная модель, оценивающая кандидатов от
<ACTOR>
и отбирающая самый подходящий для действия. Она не только улучшает точность, но и универсальна: ее можно подключить к другим моделям.Обучение требует минимум ресурсов. Можно заморозить основную VLM (Qwen2-VL-7B) и дообучить только новый action head и токены. Это всего ~100М параметров для 7B-модели.
Комбинация из такого быстрого обучения + верификатор почти догоняет полноценно обученные аналоги, сохраняя общие способности базовой модели. Никакого "катастрофического забывания" - агент учится кликать интерфейсы, не разучиваясь описывать картинки.
Результаты тестов на сложном бенчмарке ScreenSpot-Pro с высоким разрешением и незнакомыми интерфейсами (CAD, научный софт) GUI-Actor-7B с Qwen2-VL показал 40.7 балла, а с Qwen2.5-VL — 44.6, обойдя даже UI-TARS-72B (38.1).
На других тестах (ScreenSpot, ScreenSpot-v2) он тоже лидирует, особенно в иконках и текстовых элементах, демонстрируя крутую адаптацию к разным разрешениям и версткам.
В планах - выпуск еще двух моделей на основе Qwen2.5-VL (3B и 7B), демо GUI-Actor, код для модели-верификатора и датасеты для обучения.
@ai_machinelearning_big_data
#AI #ML #VLM #GUIActor #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍4🔥2
Forwarded from Machinelearning
Goodfire AI, вдохновившись примером Anthropic в интерпретации внутренних процессов Claude, воспроизвели методы трассировки цепей межслойных транскодеров (Cross-Layer Transcoders, CLT) на GPT-2 Small, чтобы проверить их способность раскрывать известные механизмы трансформеров.
Выбор на GPT-2 Small пал не случайно, эта модель небольшая и уже была ранее подвергнута ручному реверс-инжинирингу.
Cross-Layer Transcoders выжимают из модели разреженные признаки, которые объясняют работу MLP-слоев. Визуализируют это через графы атрибуции — это карты влияния признака на выход модели.
Натренировали на 100M токенов из FineWeb, получили ~590K признаков. Точность CLT-реплики модели составила 59%, что близко к оригинальным статьям. Тестировали на задаче сравнения чисел («больше, чем»), идеальном полигоне, где уже известны ключевые механизмы.
Задача "Больше, чем" (ориг. "greater-than") взята из статьи Michael Hanna, она заставляет предсказывать большие числа для второго года в диапазоне дат.
Промпт «The war lasted from the year 1711 to 17». CLT построил граф, где признаки с токена «11» (последняя цифра года) активнее всего влияли на предсказание.
Дальше, выделили топ-160 признаков, для каждого построили логит-атрибуции — теплокарты, показывающие, как признак влияет на выходные годы (ZZ) при разных входных (YY).
Похоже, CLT подсветил кучу узкоспециализированных «сравнивателей», а не универсальные нейроны, как в ручных исследованиях.
CLT автоматически находит интерпретируемые признаки, даже такие неочевидные, как абстрактная четность. Но их «разреженный» мир выглядит иначе, чем ручная трассировка цепей: тут больше узких признаков-«спецов» (Feature 461858 для диапазона 10–30) и меньше универсальных механизмов.
Возможно, дело в методе: CLT смотрит изолированные вклады фич, а в полной модели они взаимодействуют.
В общем, эксперименты с CLT показал, что под капотом языковых моделей не только четкие «сравниватели чисел», но и куча скрытых паттернов вроде детекторов контраста или любителей чисел, кратных 5. И да, полуавтономный анализ иногда видит то, что люди упускают.
@ai_machinelearning_big_data
#AI #ML #LLM #Research #CLT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤3🔥1😐1
Forwarded from Machinelearning
🚀 Парадигма меняется: Polaris выводит локальные модели на новый уровень
Polaris — это набор простых, но мощных приёмов, который позволяет даже компактным LLM (4 B, 7 B) догнать и превзойти «тяжеловесов» на задачах рассуждения (открытая 4B модель превосходи Claude-4-Opus).
Вот как это работает и почему важно:
• Управление сложностью данных
– Генерируем несколько (например, 8) вариантов решения от базовой модели
– Оцениваем, какие примеры слишком простые (8/8) или слишком сложные (0/8), и убираем их
– Оставляем «умеренные» задачи с правильными решениями в 20–80 % случаев, чтобы быть ни слишком лёгкими, ни слишком сложными
• Разнообразие «прогонов» (rollout-ов)
– Мы запускаем модель несколько раз на одной и той же задаче и смотрим, как меняются её рассуждения: одни и те же входные данные, но разные «пути» к решению.
– Считаем, насколько разнообразны эти пути (т. е. их «энтропия»): если модели всё время идут по одной линии, новых идей не появляется; если слишком хаотично — рассуждения неустойчивы.
– Задаём начальную “температуру” генерации там, где баланс между стабильностью и разнообразием оптимален, а затем постепенно её повышаем, чтобы модель не застревала на одних и тех же шаблонах и могла исследовать новые, более креативные ходы.
• “Train-short, generate-long”
– Во время RL-обучения используем короткие цепочки рассуждений (короткие CoT) для экономии ресурсов
– На inference увеличиваем длину CoT, чтобы получить более детальные и понятные объяснения без накрутки стоимости обучения
• Динамическое обновление датасета
– По мере роста точности удаляем примеры с accuracy > 90 %, чтобы не «портить» модель слишком лёгкими задачами
– Поддерживаем постоянный вызов модели на её пределе возможностей
• Улучшенная reward-функция
– Комбинируем стандартный RL-reward с бонусами за разнообразие и глубину рассуждений
– Это позволяет модели учиться не только давать правильный ответ, но и объяснять логику своих решений
Преимущества Polaris
• Благодаря Polaris даже компактные LLM (4 B и 7 B) достигают и даже «тяжеловесов» (32 B–235 B) на AIME, MATH и GPQA
• Обучение на доступных GPU уровня consumer-grade — до 10× экономии ресурсов и затрат по сравнению с традиционными RL-пайплайнами
• Полный открытый стек: исходники, подборка данных и веса
• Простота и модульность: готовый к использованию фреймворк для быстрого внедрения и масштабирования без дорогостоящей инфраструктуры
Polaris доказывает, что качество данных и грамотная настройка RL-процесса важнее просто «больших моделей». С ним вы получите продвинутую reasoning-LLM, которую можно запустить локально и масштабировать везде, где есть обычная GPU.
▪Blog post: https://hkunlp.github.io/blog/2025/Polaris
▪Model: https://huggingface.co/POLARIS-Project
▪Code: https://github.com/ChenxinAn-fdu/POLARIS
▪Notion: https://honorable-payment-890.notion.site/POLARIS-A-POst-training-recipe-for-scaling-reinforcement-Learning-on-Advanced-ReasonIng-modelS-1dfa954ff7c38094923ec7772bf447a1
@ai_machinelearning_big_data
#ml #ai • #Polaris #PostTraining #ReinforcementLearning #LLM
Polaris — это набор простых, но мощных приёмов, который позволяет даже компактным LLM (4 B, 7 B) догнать и превзойти «тяжеловесов» на задачах рассуждения (открытая 4B модель превосходи Claude-4-Opus).
Вот как это работает и почему важно:
• Управление сложностью данных
– Генерируем несколько (например, 8) вариантов решения от базовой модели
– Оцениваем, какие примеры слишком простые (8/8) или слишком сложные (0/8), и убираем их
– Оставляем «умеренные» задачи с правильными решениями в 20–80 % случаев, чтобы быть ни слишком лёгкими, ни слишком сложными
• Разнообразие «прогонов» (rollout-ов)
– Мы запускаем модель несколько раз на одной и той же задаче и смотрим, как меняются её рассуждения: одни и те же входные данные, но разные «пути» к решению.
– Считаем, насколько разнообразны эти пути (т. е. их «энтропия»): если модели всё время идут по одной линии, новых идей не появляется; если слишком хаотично — рассуждения неустойчивы.
– Задаём начальную “температуру” генерации там, где баланс между стабильностью и разнообразием оптимален, а затем постепенно её повышаем, чтобы модель не застревала на одних и тех же шаблонах и могла исследовать новые, более креативные ходы.
• “Train-short, generate-long”
– Во время RL-обучения используем короткие цепочки рассуждений (короткие CoT) для экономии ресурсов
– На inference увеличиваем длину CoT, чтобы получить более детальные и понятные объяснения без накрутки стоимости обучения
• Динамическое обновление датасета
– По мере роста точности удаляем примеры с accuracy > 90 %, чтобы не «портить» модель слишком лёгкими задачами
– Поддерживаем постоянный вызов модели на её пределе возможностей
• Улучшенная reward-функция
– Комбинируем стандартный RL-reward с бонусами за разнообразие и глубину рассуждений
– Это позволяет модели учиться не только давать правильный ответ, но и объяснять логику своих решений
Преимущества Polaris
• Благодаря Polaris даже компактные LLM (4 B и 7 B) достигают и даже «тяжеловесов» (32 B–235 B) на AIME, MATH и GPQA
• Обучение на доступных GPU уровня consumer-grade — до 10× экономии ресурсов и затрат по сравнению с традиционными RL-пайплайнами
• Полный открытый стек: исходники, подборка данных и веса
• Простота и модульность: готовый к использованию фреймворк для быстрого внедрения и масштабирования без дорогостоящей инфраструктуры
Polaris доказывает, что качество данных и грамотная настройка RL-процесса важнее просто «больших моделей». С ним вы получите продвинутую reasoning-LLM, которую можно запустить локально и масштабировать везде, где есть обычная GPU.
▪Blog post: https://hkunlp.github.io/blog/2025/Polaris
▪Model: https://huggingface.co/POLARIS-Project
▪Code: https://github.com/ChenxinAn-fdu/POLARIS
▪Notion: https://honorable-payment-890.notion.site/POLARIS-A-POst-training-recipe-for-scaling-reinforcement-Learning-on-Advanced-ReasonIng-modelS-1dfa954ff7c38094923ec7772bf447a1
@ai_machinelearning_big_data
#ml #ai • #Polaris #PostTraining #ReinforcementLearning #LLM
🔥10👍3❤2