291K subscribers
3.98K photos
698 videos
17 files
4.57K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
📌Как заставить нейросеть забыть данные, к которым больше нет доступа.

Представьте, что вам прилетает требование на удаление данных в соответствии с GDPR или по авторскому праву, а исходного датасета, на котором обучалась модель, у вас уже нет. Переобучить модель с нуля - долго, дорого и не вариант.

Именно для таких безвыходных ситуаций, группа исследователей из Калифорнийского университета создала метод "разучивания" для моделей, который не требует доступа к исходным данным, но при этом дает строгие математические гарантии удаления информации.

Метод построен на использовании суррогатного датасета, который лишь статистически похож на оригинальный. Ключевая идея - калибровка добавляемого в модель шума, количество которого напрямую зависит от статистической дистанции (например, дивергенции Кульбака-Лейблера) между оригинальным и суррогатным распределениями.

Если коротко, то чем меньше суррогатный набор данных похож на тот, что был утерян, тем больше шума придется добавить, чтобы гарантировать, что модель действительно забыла ненужные данные и стала неотличима от гипотетически переобученной с нуля.

🟡А как измерить эту дистанцию без доступа к оригиналу?

Для этого используется сама модель, ведь она неявно хранит информацию о распределении данных, на которых училась. С помощью метода стохастической градиентной динамики Ланжевена генерируется выборка, которая аппроксимирует исходное распределение, и уже на ее основе можно оценить расхождение с суррогатным датасетом.

🟡Тесты и их результаты.

На синтетических данных, где можно вычислить точную KL-дивергенцию, их метод, "Unlearn -", показал себя отлично. При увеличении расхождения между датасетами точность на тесте держится на уровне 72.3-72.7%, что сопоставимо с методом, имеющим доступ к исходникам "Unlearn +".

На реальных датасетах картина такая же. Для CIFAR-10, при параметре концентрации Дирихле=36, метод "Unlearn -" достигает 76.4% точности на тестовой выборке. Для сравнения, "Unlearn +" показал 76.5%, а полное переобучение - 76.7%. Разница минимальна.

Эффективность метода доказывает и метрика Forget Score (FS), которая показывает, насколько разучившаяся модель близка к переобученной с нуля. FS их метода практически идентичен идеальному показателю.

Гибкость подхода проверили и на разных архитектурах. На CIFAR-10 с моделью из двух свёрточных слоёв и одного линейного метод показал 80.5% точности на тесте, а версия с доступом к данным - 81.4%.

В эксперименте, где для модели на датасете USPS в качестве суррогата использовался MNIST, "Unlearn -" достиг 90.4% точности, что совсем немного уступает 91.3% у "Unlearn +" и 91.1% у полного переобучения


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #Unlearning #UCR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥30👍158🥰7😁2👀2💯1🗿1