223K subscribers
3.87K photos
654 videos
17 files
4.49K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
🖼️ GPT-Image-Edit-1.5M — крупнейший и полностью открытый датасет для редактирования изображений по тексту!

🚀 1.5 миллиона триплетов:
инструкция + оригинальное изображение + отредактированное по запросу

Как мы это сделали?
Мы переосмыслили и усилили три известных датасета (OmniEdit, HQ-Edit, UltraEdit) с помощью новой GPT-Image API.

📊 Результаты впечатляют:
Модель FluxKontext, дообученная на этом наборе, показывает:
▫️ 7.24 на GEdit-EN
▫️ 3.80 на ImgEdit-Full
▫️ 8.78 на Complex-Edit
— на уровне с топовыми проприетарными решениями!

🎯 Инструкции выполняются точно, а изображения выглядят реалистично.
Цель — сократить разрыв между open-source и закрытыми системами редактирования.

🔗 Подробнее:
🌐 Проект: https://ucsc-vlaa.github.io/GPT-Image-Edit/
💻 Код: https://github.com/wyhlovecpp/GPT-Image-Edit
📦 Датасет: https://huggingface.co/datasets/UCSC-VLAA/GPT-Image-Edit-1.5M
🤖 Модель: https://huggingface.co/UCSC-VLAA/gpt-image-edit-training
📄 Статья: https://arxiv.org/abs/2507.21033

@ai_machinelearning_big_data


#AI #ImageEditing #OpenSource #GPT4V #Multimodal
194👍40🔥17👏2
✔️ Grok 4 доступен бесплатно!

Бесплатным пользователям доступно:
🟢Grok 3 - 15 запроса каждые 2 часа
🟢Grok 4 - 5 запросов каждые 12 часов

Бесплатный доступ, вероятно, является ответом на запуск ChatGPT5, хотя последний в настоящее время имеет более высокие лимиты для бесплатных пользователей.

📌 http://x.com/i/grok

@ai_machinelearning_big_data

#grok #ai #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍12847🔥15🥱7😁6🤩2
📌Новый прорыв в алгоритмах: найден способ считать кратчайшие пути быстрее Дейкстры

Метод преодоления "барьера сортировки" для задач кратчайшего пути в ориентированных графах.

Группа исследователей из университетов Синьхуа, Стенфорда и Института Макса Планика представили детерминированный алгоритм для решения задачи SSSP в ориентированных графах с неотрицательными вещественными весами, который работает за время, пропорциональное числу ребер, умноженному на логарифмический множитель, который растет медленнее, чем обычный логарифм.

Проблема поиска кратчайшего пути от одной вершины до всех остальных (SSSP) — одна из фундаментальных в теории графов, и её история тянется с 50-х годов прошлого века. Классический алгоритм Дейкстры, в связке с продвинутыми структурами данных, решает эту задачу за время, которое примерно пропорционально сумме числа рёбер и произведения числа вершин на логарифм от их же числа.

Именно этот множитель - число вершин, умноженное на логарифм, долгое время считался теоретическим минимумом, так как в своей основе алгоритм Дейкстры побочно сортирует вершины по расстоянию от источника. Этот предел известен как «барьер сортировки» и казался непреодолимым.


🟡Основная идея работы - гибрид из алгоритма Дейкстры и алгоритма Беллмана-Форда.

Алгоритм Дейкстры на каждом шаге выбирает из "границы" - множества еще не обработанных вершин ту, что находится ближе всего к источнику. Это и создает узкое место, так как размер границы может достигать величины, сопоставимой с общим числом вершин в графе, и на каждом шаге требуется находить минимум.

Алгоритм Беллмана-Форда, в свою очередь, не требует сортировки, но его сложность пропорциональна числу ребер, умноженному на количество шагов, что слишком долго.

🟡Новый подход использует рекурсию.

Вместо того чтобы поддерживать полную отсортированную границу, алгоритм фокусируется на ее сокращении. А если граница слишком велика, то запускается несколько шагов алгоритма Беллмана-Форда из ее вершин.

Это позволяет найти точное расстояние до некоторой части вершин, чьи кратчайшие пути коротки. Длинные же пути должны проходить через одну из "опорных" вершин, которых оказывается значительно меньше, чем вершин в исходной границе. Таким образом, сложная работа концентрируется только на этом небольшом наборе опорных точек.

🟡Принцип "разделяй и властвуй".

Он рекурсивно разбивает задачу на несколько уровней. На каждом уровне применяется вышеописанная техника сокращения границы, что позволяет значительно уменьшить объем работы на каждую вершину, поскольку логарифмический множитель эффективно делится на другой, более медленно растущий логарифмический член.

В итоге, путем подбора внутренних параметров алгоритма, которые являются специфическими функциями от логарифма числа вершин, и достигается итоговая временная сложность, пропорциональная числу ребер, умноженному на этот новый, более медленно растущий логарифмический множитель.

✔️ Зачем это нужно
— Быстрее решаются задачи в навигации, графах дорог, сетях и планировании.
— Доказано, что Дейкстра — не предел, и можно ещё ускорять поиск кратчайших путей.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #Sorting #Graphs #Algorithm
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥165👍7628🫡6👏2❤‍🔥1
🚀 GLM-4.5V — новый лидер среди open-source моделей в визуальном рассуждении.

Модель показывает лучшие результаты в своём классе среди открытых решений, лидируя на 41 бенчмарке.

📌 Возможности:
- Image Reasoning — понимание изображений, анализ нескольких изображений, распознавание объектов.
- Video Understanding — раскадровка длинных видео, определение событий, которые происходят на кадрах из видео.
- GUI-задачи — понимание интрефейсов, распознавание иконок, кнопок и тд, помощь в управлении рабочим столом.
- Сложный анализ графиков и документов — разбор различных отчётов, извлечение информации их них.
- Grounding — точная локализация элементов на изображениях.

📌 Особенности:
🟠 Основана на GLM-4.5-Air и использует наработки из GLM-4.1V-Thinking.

🟠 Архитектура — MoE с 106B параметров для эффективного масштабирования.

Здесь можно почитать про GLM-4.5, а здесь посмотреть техрепорт, там много интересного.

🟢 Hugging Face: http://huggingface.co/zai-org/GLM-4.5V
🟢 GitHub: http://github.com/zai-org/GLM-V
🟢 Документация API: http://docs.z.ai/guides/vlm/glm-4.5v
🟢 Попробовать: http://chat.z.ai

@ai_machinelearning_big_data

#GLM #opensource #vlm
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥81👍2019🥰4😁1🤝1
Media is too big
VIEW IN TELEGRAM
✔️ Команда FAIR заняла первое место в соревновании Algonauts 2025.

Algonauts - соревнование по созданию моделей, наиболее точно предсказывающих активность человеческого мозга в ответ на мультимодальные стимулы (видео со звуком и текстом).

Победившая модель, TRIBE (Trimodal Brain Encoder) с 1 млрд. параметров, стала первой глубокой нейросетью, обученной предсказывать реакцию мозга сразу на несколько типов данных в разных кортикальных областях и у разных людей.

TRIBE объединяет предобученные представления из нескольких фундаментальных моделей: Llama 3.2 (текст), Wav2Vec2-BERT (аудио) и V-JEPA 2 (видео). Модель успешно предсказала сигналы фМРТ, полученные в ходе 80-часового эксперимента, где испытуемые смотрели фильмы.

Код, наборы данных и техотчет TRIBE опубликованы в открытом доступе.
Компания Марка Цукерберга в сети Х

✔️ ИИ от OpenAI взял "золото" среди моделей на Международной олимпиаде по информатике .

ИИ-система от OpenAI, ориентированная на логические рассуждения, показала результат, соответствующий золотой медали на Международной олимпиаде по информатике (IOI) 2025 года. Она заняла 6 место в общем зачете среди 330 участников-людей и опередила все другие ИИ-системы.

Этот результат значительно выше по сравнению с прошлым годом, предыдущая версия не дотянула даже до бронзы. В OpenAI говорят, что модель достигла такого успеха без специальной донастройки на олимпиадных задачах.
Open AI в сети Х

✔️ CEO GitHub покидает Microsoft.

Гендиректор GitHub Томас Домке объявил о своем уходе из компании. Он планирует основать собственный стартап, а до конца 2025 года будет заниматься передачей дел. Это решение завершает его почти четырехлетнее руководство, отмеченное внедрением искусственного интеллекта.

Преемника на пост CEO назначать не будут. Вместо этого Microsoft интегрирует GitHub в свое новое инженерное подразделение - CoreAI. Эта реорганизация лишает GitHub полуавтономного статуса внутри корпорации.

За время работы Домке аудитория GitHub выросла до 150 миллионов разработчиков, а число репозиториев превысило миллиард. Ключевым достижением стал запуск ИИ-ассистента Copilot, который привлек 20 миллионов пользователей и помог увеличить годовой доход платформы до 2 миллиардов долларов.
axios.com

✔️ Pika Labs представила быструю и дешевую модель для липсинка.

Стартап анонсировал новую модель, которая генерирует HD-видео с точной синхронизацией губ под аудиодорожку всего за 6 секунд, независимо от длины клипа. По заявлению компании, система создает "гиперреалистичную мимику" и работает в 20 раз быстрее и в 20 раз дешевле, чем их модель предыдущего поколения.

Ранние тесты уже подтвердили способность модели работать в реальном времени со сложными аудиодорожками.
Pika Labs в сети X

✔️ Уровень безработицы среди молодых IT-специалистов в США достиг 6%.

Исследование Федерального резервного банка Нью-Йорка показало тревожную тенденцию: уровень безработицы среди американских выпускников IT-специальностей в возрасте от 22 до 27 лет вырос до 6.1%. Это вдвое выше, чем у выпускников-биологов или искусствоведов. Для программистов ситуация еще хуже — 7.5% безработных.

Причинами стали массовые увольнения в технологических гигантах, а также широкое распространение ИИ-ассистентов для кодинга, которые автоматизируют задачи, ранее выполнявшиеся новичками. По данным портала Indeed, количество вакансий для junior-разработчиков на 21% ниже, чем до пандемии Covid-19, в то время как спрос на старших специалистов растет.

Ситуацию усугубляет и перенасыщение рынка: в прошлом году в США было выпущено 170 тысяч IT-специалистов, что вдвое больше, чем в 2014 году. Некоторые выпускники сообщают, что отправляют сотни и даже тысячи резюме, не получая ответа.
nytimes.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
48👍24🔥9🤔3🎉3😨3
Data Scientist — одна из самых перспективных профессий 2025 года, по данным Мирового экономического форума 📊

Освоить эту профессию можно на курсе Нетологии — с погружением в практику, сопровождением ментора, поддержкой профессионального комьюнити и экспертов из Яндекса, Сбера, VK и Amazon.

В результате обучения вы:
- изучите Apache Spark, pandas, PostgreSQL и другие инструменты для обработки больших данных;
- научитесь применять технологии машинного обучения для решения бизнес-задач;
- отработаете навыки на реальных проектах компаний-партнёров: «Северстали», «Гринатома», Neoflex.

Чтобы ещё больше расширить скиллсет, сможете пройти бонусные модули по английскому языку, рекомендательным системам, нейросетям и deep learning.

Сейчас на курс действует скидка 40% — записывайтесь

Реклама. ООО "Нетология". ИНН 7726464125 Erid 2VSb5w9Jm9T
😁2912🥱10👍6🔥6
⚡️ Nvidia на SIGGRAPH 2025: самое главное.

На конференции SIGGRAPH 2025 Nvidia представила свою центральную концепцию — "Физический ИИ".

Это конвергенция ИИ и компьютерной графики для создания систем, способных действовать в реальном мире, будь то роботы, автономные автомобили или умная инфраструктура.

🟡Новое железо на архитектуре Blackwell.

Для дата-центров представили GPU Nvidia RTX PRO 6000 Blackwell Server Edition для стандартных корпоративных серверов форм-фактора 2U. Системы на его базе смогут достигать до 45 раз более высокой производительности и в 18 раз лучшей энергоэффективности по сравнению с чисто процессорными решениями.

Тензорные ядра пятого поколения с поддержкой формата FP4 бустят инференс в 6 раз по сравнению с предыдущим поколением L40S.

Для рабочих станций анонсировали две компактные видеокарты: Nvidia RTX PRO 4000 SFF Edition и RTX PRO 2000 Blackwell.

Первая обеспечивает до 2.5 раз более высокую производительность в ИИ-задачах при том же энергопотреблении в 70 Вт, а вторая в 1.4 раза быстрее в CAD-приложениях.

🟡Физический ИИ для робототехники.

Для Omniverse анонсировали новую библиотеку NuRec, которая реконструирует реальные окружения из данных сенсоров с помощью 3D Gaussian splatting.

Приложения для симуляции Isaac Sim 5.0 и Isaac Lab 2.2 теперь доступны в виде опенсорс-проектов на GitHub.

В качестве примера показали кейс Amazon, где CAD-модели новых продуктов загружаются в Isaac Sim для генерации более 50 000 синтетических изображений. На этих данных обучаются ИИ-модели, которые затем управляют роботизированными манипуляторами для контроля качества продукции — и все это без каких-либо физических модификаций оборудования.


🟡Новые семейства ИИ-моделей.

Для корпоративных задач линейку Nemotron расширили моделями Nemotron Nano 2 и Llama Nemotron Super 1.5. Они предназначены для выполнения сложных многоэтапных задач в кибербезопасности или клиентском сервисе.

Специально для "Физического ИИ" была разработана 7-миллиардная VLM Cosmos Reason. Ее задача - позволить роботам и агентам интерпретировать физический мир, используя априорные знания, понимание физики и "здравый смысл". Эту модель уже использует Uber для для анализа поведения автономных автомобилей.

🟡Платформа для умных городов и производств Metropolis.

Платформа дополнена интеграцией с VLM Cosmos Reason, новыми vision-моделями в TAO Toolkit и расширениями для Isaac Sim, позволяющие генерировать редкие сценарии обучения.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥60👍2518
MWS Cloud презентовала платформу для инференса AI-моделей, которая позволяет более чем на 15% оптимизировать затраты на GPU.

Платформа может выводить в продакшн любые обученные ML-модели, большие языковые модели и модели компьютерного зрения. Поверх стандартного Kubernetes, платформа имеет простой и мощный API, который упрощает работу инженеров. Также в ней доработана оркестрация, что позволяет оптимизировать затраты на GPU.

Платформа позволяет:

- В десятки раз быстрее интегрировать LLM и CV-модели с ИТ-системами компаний;

- Снизить операционную нагрузку на ML-команды при эксплуатации моделей на 70%;

- Повысить автоматизацию CI/CD более чем на треть;

- Уменьшить затраты на GPU более чем на 15%;

Inference Valve интегрируется с ML-платформой и инструментами непрерывной разработки (CI/CD), а получить к ней доступ можно как из частного облака на инфраструктуре MWS Cloud, так и on-prem на серверах заказчика, а также в составе программно-аппаратных комплексов (ПАК) в закрытом контуре, включая режимы с ограниченным доступом к внешним сетям.

Inference Valve также предоставляет метрики задержек и пропускной способности, мониторинг доступности, алёрты и дашборды; доступна телеметрия качества, включая отслеживание дрейфа данных и моделей, контроль целевых метрик и уведомления при деградации. Интеграция с системами наблюдаемости (Prometheus/Grafana) и журналированием запросов упрощает аудит и разбор инцидентов.

Попробовать Inference Valve можно по ссылке.

@ai_machinelearning_big_data
👍3014🔥6🤣5
🚀 Hunyuan-Large-Vision: новая мощная мультимодальная модель от Tencent

🔹 MoE-архитектура — 389B параметров (52B активных) для оптимального баланса мощности и эффективности.
🔹 Лидер в рейтингах — 1256 баллов в LMArena Vision, #1 в Китае, на уровне GPT-4.5 и Claude-4-Sonnet.
🔹 Глубокое понимание — визуальное рассуждение, анализ видео и 3D-пространства, 79,5 баллов в среднем по бенчмарку OpenCompass.

📌 Модель дополняет линейку Hunyuan-TurboS-Vision и Hunyuan-T1-Vision, доступных через Tencent Cloud для задач в самых разных отраслях.

🟢Попробовать: https://hunyuan.tencent.com/modelSquare/home/list?modelKey=VisionUnderstand
🟢 Блог: https://vision.hunyuan.tencent.com
🟢API: https://cloud.tencent.com/document/product/1729/104753

@ai_machinelearning_big_data


#AI #Multimodal #MachineLearning #MoE #VisionAI #Tencent #Hunyuan #LLM #ComputerVision #3DVision
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3912🔥10
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Jan-v1: локальная 4B-модель для веба — опенсорсная альтернатива Perplexity Pro

📌 Что умеет
- SimpleQA: 91% точности, чуть выше Perplexity Pro — и всё это полностью локально.
- Сценарии: быстрый веб-поиск и глубокое исследование (Deep Research).

Из чего сделана
- Базируется на Qwen3-4B-Thinking (контекст до 256k), дообучена в Jan на рассуждение и работу с инструментами.

Где запускать
- Jan, llama.cpp или vLLM.

Как включить поиск в Jan
- Settings → Experimental Features → On
- Settings → MCP Servers → включите поисковый MCP (например, Serper)

Модели
- Jan-v1-4B: https://huggingface.co/janhq/Jan-v1-4B
- Jan-v1-4B-GGUF: https://huggingface.co/janhq/Jan-v1-4B-GGUF

@ai_machinelearning_big_data

#ai #ml #local #Qwen #Jan
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7018🔥15
🎮 Matrix-Game 2.0 — первая опенсорс модель, которая генерирует интерактивные 3D-миры из текста в реальном времени


Неделю назад DeepMind показала Genie 3, но код не был выложен в открытый доступ.

А сегодня Skywork выложили свой генератор
Matrix-Game 2.0 миров в опенсорс 🚀

Возможности:

🟢25 кадров/с в реальном времени
🟢Генерирует минуты непрерывного геймплея
🟢Полная интерактивность: движение, повороты, исследование мира

Можно использовать несколько встроенных шаблонов: город, дикая природа, TempleRun, GTA и др.

Зачем это нужно:
🟠Создание игровых движков
🟠Тренировка AI-агентов
🟠Создание виртуальных персонажей

Заявленые требования: GPU с памятью не менее 24 ГБ (A100 и H100 протестированы).

Как работает:
• Обучена на 1350 часах видео геймлея
• Управление: движок реагирует на нажатия клавиш и движение мыши на каждом кадре
• Модель: 1,3 млрд параметров
• KV-Cache хранит контекст, чтобы окружение генерировалось без ограничений по времени

🟡Huggingface Model: https://huggingface.co/Skywork/Matrix-Game-2.0
🟡 Repo: https://matrix-game-v2.github.io

@ai_machinelearning_big_data

#AI #MatrixGame #OpenSource #DeepLearning #GameDev #InteractiveAI #WorldModel #GenerativeAI #RealtimeAI #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥79👍2420🥱3😐3
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI инвестирует в Merge Labs - конкурента Neuralink.

OpenAI ведет переговоры об инвестициях в Merge Labs, стартап в области нейрокомпьютерных интерфейсов, который планирует создание высокоскоростных BCI-систем.

Merge Labs планирует привлечь 250 миллионов долларов при оценке в 850 миллионов. Сэм Альтман будет числиться сооснователем вместе с бывшим топ-менеджером Neuralink Алексом Бланиа, однако не будет заниматься операционной деятельностью. Ожидается, что основное финансирование поступит от венчурного подразделения OpenAI.

Этот шаг еще больше обостряет давнее соперничество между Альтманом и Маском, которые в 2015 году вместе основали OpenAI, но позже разошлись во взглядах.
ft.com

✔️ Контекстное окно Claude Sonnet 4 расширено до миллиона токенов.

Anthropic объявила о значительном увеличении контекстного окна для Claude Sonnet 4 до одного миллиона токенов. Это в 5 раз больше предыдущего лимита и позволит обрабатывать за один проход целые кодовые базы или большие массивы документов. Новая возможность уже доступна в публичной бете через API Anthropic, Amazon Bedrock, а в скором времени появится и в Google Cloud Vertex AI.

За расширение придется платить больше. Для запросов свыше 200 тыс. входных токенов цена удваивается и составит 6 долларов за миллион токенов. Стоимость выходных токенов также вырастет с 15 до 22.50 долларов за миллион.
anthropic.com

✔️ Microsoft ведет целенаправленную кампанию по найму топовых инженеров и исследователей из компании Марка Цукерберга.

Согласно внутренним документам, Microsoft составила список конкретных сотрудников с указанием их имен, ролей и принадлежности к командам: Reality Labs, GenAI Infrastructure и AI Research. Корпорация готова предложить им многомиллионные компенсационные пакеты - крупные бонусы при найме, конкурентные зарплаты, значительные пакеты акций и высокие годовые премии.

Для ускорения процесса в Microsoft внедрили специальную процедуру. Рекрутеры могут помечать кандидатов как "критически важные ИИ-таланты" и тогда процесс рассмотрения и утверждения на уровне руководства возможен в течение 24 часов.
businessinsider.com

✔️ AI2 выпустил открытую модель для робототехники.

Институт искусственного интеллекта Аллена представил MolmoAct 7B — опенсорсную модель для планирования движений роботов в трехмерном пространстве. Система интерпретирует команды на естественном языке, создает 3D-реконструкцию сцены и прокладывает траекторию движения, которую разработчик может просмотреть и скорректировать до того, как робот начнет действовать.

Модель на 7 млрд. параметров была обучена на 18 млн. примеров, в которых были включены 12 тыс. эпизодов из реального мира. В бенчмарке SimPLER система показала успешность выполнения задач в 72.1%, обойдя решения от Nvidia, Google и Microsoft.

AI2 опубликовал техотчет, веса и датасеты, позиционируя MolmoAct как свободно доступную альтернативу проприетарным решениям.
allenai.org

✔️ SEELE AI запустила публичное тестирование генератора 3D-игр по текстовому описанию.

Платформа создает полноценные, играбельные проекты на основе текстового описания на естественном языке, не требуя навыков программирования. Система использует большие модели для автоматической генерации всех ключевых элементов: 3D-сцен, персонажей и игровой логики, интегрируя текст, 3D-моделирование и физические движки.

Помимо основной генерации, инструмент поддерживает персонализацию созданных игр, предварительный просмотр в реальном времени и возможность оптимизации. SEELE AI позиционирует свой сервис не только как игровой инструмент, но и как платформу для создания контента в сфере образования, маркетинга и социальных сетей.
Попробовать инструмент можно на официальном сайте.
Seele AI в сети Х

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍264🔥3