232K subscribers
3.88K photos
660 videos
17 files
4.5K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
🌟 iMESA:  распределенный алгоритм совместной одновременной локализации и картографирования (C-SLAM) для групп рoботов.


iMESA расширяет алгоритм MESA, используя согласованный метод множителей с переменным направлением (C-ADMM) для пакетных задач C-SLAM.
Он дает возможность роботам обновлять свои локальные решения по мере поступления новых измерений и взаимодействовать друг с другом для поддержания согласованности, предоставляя точные оценки состояния в режиме реального времени при незначительном количестве спораидальных взаимодействий между собой.

iMESA использует возможности оптимизации iSAM2, обеспечивая согласованность оценок состояния с помощью смещенных априорных значений.
Алгоритм масштабируем, хорошо справляется с различными размерами групп и сложностью задач. Он подходит для разработки мультироботных систем в условиях, связанных с развертыванием групп роботов в реальном мире при ограниченных коммуникационных и вычислительные ресурсах.

Программная реализация iMESA выполнена в виде библиотеки C++ с классом IMESAAgent для использования на борту каждого робота. iMESA имеет зависимость от GTSAM версии 4.2.0. Специфические функции разработки, необходимые для iMESA, доступны в ветке 4.2.0-imesa. Тестовые проекты для запуска можно найти в репозитории imesa-experiments.

Поскольку этот пакет представляет собой только библиотеку, чаще всего он будет использоваться в качестве сторонней зависимости в вашем проекте. Используйте FetchContext для доступа к библиотеке iMESA, включите iMESA как зависимость в свой проект, добавив в файл CMakeLists.txt:


include(FetchContent)
FetchContent_Declare(
imesa
GIT_REPOSITORY https://github.com/rpl-cmu/imesa.git
GIT_TAG main
)
FetchContent_MakeAvailable(imesa)



📌Лицензирование : MIT license


🟡Arxiv
🖥Github [ Stars: 69 | Issues: 1 | Forks: 4]


@ai_machinelearning_big_data

#AI #MESA #Robots #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍199🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Перед вами недавно снятое видео с "испытательных полигонов" Unitree, демонстрирует головокружительную скорость развития человекоподобных-роботов.

Unitree постоянно совершенствуют алгоритмы управления, позволяя роботу обучаться и осваивать всё более сложные и точные движения.

Модель G1 обладает 23 степенями свободы, это гарантирует исключительную устойчивость и координацию.

Робот оснащён 3D-лидаром, камерой глубины и комплектом микрофонов с функцией шумоподавления для надёжного распознавания голосовых команд.

Его «сердцем» является 8-ядерный процессор, обеспечивающий такую высокую манёвренность ❤️

G1 оборудован легко заменяемой батареей ёмкостью 9000 мА·ч, что позволяет ему работать до двух часов, с возможностью оперативной замены источника питания. Максимальная скорость робота достигает 7,2 км/ч.

При росте 1,32 метра и весе 35 кг, гуманоидный робот может компактно складываться, занимая пространство в контейнере размером всего 69 × 44 × 30 см.

На этапе первичного обучения G1 использует симулятор Isaac от Nvidia, который с помощью методов обучения с подкреплением помогает осваивать сложнейшие алгоритмы поведения в контролируемой цифровой среде.

Затем отработанные действия плавно переносятся в физическую модель с использованием процесса Sim2Real, что обеспечивает высокую точность выполнения движений в реальном мире.

Unitree выпустила открытый датаяет, предназначенный для повышения эффективности управления и координации движений человекоподобных роботов.

Набор данных, созданный с применением технологии захвата движения LAFAN1, полностью совместим с гуманоидными системами Unitree.

Он включает усовершенствованный алгоритм перенаправления, который оптимизирует планирование движений через интерактивную обработку и обратную кинематику с учётом ограничений позы, сочленений суставов и параметров скорости.

Кстати, цена такого робота начинается от 16к$

https://www.unitree.com/g1

@ai_machinelearning_big_data


#ai #robots #news #unitree #ArtificialIntelligence #HumanoidRobot
Please open Telegram to view this post
VIEW IN TELEGRAM
👍86🔥4716😨6
🤖 Modern Robotics Course: Открытый курс по современной робототехнике.

Курс содержит лекции, учебные заметки, алгоритмы и практические задания, что позволяет последовательно изучать тему – от основ кинематики до сложных вопросов управления и планирования роботов.

🌟 Что внутри?
Лекции: От основ робототехники, математики и физики до пространственных преобразований, обратной кинематике и более продвинутым концепциям .
Практика: Примеры кода на Python и C++ для управления роботами.
Симуляторы: Интеграция с стимуляторами Gazebo и ROS ( операционная система для робото) для тестирования алгоритмов.
Задания: Реальные практические задачи (например, управление манипулятором робота).

🌟 Для кого?
Начинающие робототехники: Освоить кинематику, динамику, управление.
Программисты: Интегрировать алгоритмы в ROS, Gazebo, Python/C++.
Инженеры: Возможность Научиться разрабатывать автономные системы и манипуляторы.
Технологические энтузиасты

С курсом у вас будет возможность проектировать роботов, не имея железа под рукой (через симуляторы).

✔️ Готовые решения: Внутри вы найдете библиотеки для работы с преобразованиями, датчиками, движением.

✔️Карьера в робототехнике: Курс даст возможность получить базовые навыки, востребованные в Bosch, Boston Dynamics, Tesla.

⭐️ Преимущества перед другими открытыми курсами
🟠 Акцент на практике: Минимум абстракций — максимум кода.
🟠Совместимость с ROS: Стандарт для промышленной робототехники.
🟠 Современные алгоритмы: Не только классика, но и нейросетевые подходы.

➡️ Cовет: Для погружения в курс, вам поможет книга Robotics, Vision and Control: Fundamental Algorithms in Python, Peter Corke, вот ее репозиторий с примерами кода.

P.S. А для тех, кто любит формат «сделай сам»: Курс научит вас собирать робота виртуально, а потом переносить решения на реальные устройства. 🤖💡

✔️ Github
✔️ Введение в курс
✔️Видео лекции

#course #ai #ml #robots #education #курс #робототехника
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥90👍3812🗿4🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
💊 Свежее видео с роботами, выполняющими настоящие клинические работы.

Для этого гуманоидного робота
UnitreeRobotics G1 была разработана компексная система двуручного управления, включающая в себя систему отслеживание позы, продвинутые настройки захвата движений и контроллер для безопасного и точного манипулирования медицинскими инструментами.

Робот тестируется для семи различных медицинских процедур, включая физические осмотры, экстренные вмешательства, точные задачи, требующие мелкой моторики и др.

🤖 Очень скоро роботизированные врачи заполнят больницы

На видео робот управляется оператором дистанционно, автономность это следующий этап развития!

В будущем у каждого будет свой личный врач 💉

#robotics #engineering #technology #robots
Please open Telegram to view this post
VIEW IN TELEGRAM
50🔥23👍16👀8😁7🤨4🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Bambot — это доступный гуманоидный робот с открытым ПО, которого вы можете собрать самостоятельно.

Робот обойдется вам примерно в 300 долларов

Проект вдохновлён подобными опенсорсными роботами, такими как lerobot, , so-100 и lekiwi.

Основная цель — демократизация технологий, обеспечивая доступ к робототехнике для более широкой аудитории.

А здесь вы найдете список комплектующий, со ссылками на Ali. Здесь описано ПО для робота.

🟢github
🟢hardware
🟢software

@ai_machinelearning_big_data


#robots #ai #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍69🔥24😁8🤨75
🤖 RoboVerse — это универсальная платформа для исследований в области робототехники.

Содержит среду для симуляции, синтетический датасет и бенчмарки.

RoboVerse позволяет работать с разными симуляторами и различными типами роботов и роботизированными платформами через единый API.

Позволяет легко переключаться между симуляторами, подгружать необходимые объекты, управлять физикой и т.д.

Платформа ориентирована на задачи обучения с подкреплением (RL) и имитационное обучение (IL).

Предусматриваются разные уровни обобщения и усложнения задач, что помогает объективно сравнивать алгоритмы и подходы.

Высокая реалистичность: точная физика и фотореалистичный рендеринг улучшают перенос (sim-to-real transfer).

Единая инфраструктура: снижает порог вхождения для исследователей, которые хотят тестировать алгоритмы в разных симуляторах и на разных роботах.

RoboVerse упрощает проведение экспериментов и помогает получить надёжные результаты — от имитационного обучения до обучения с подкреплением и моделирования окружения.

🔥 Лицензирование: Apache License 2.0.

🟡Код
🟡Wiki
🟡Project

#rl #ai #robots #IL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45🔥186
Media is too big
VIEW IN TELEGRAM
🤖 Fourier Intelligence выпустила Fourier N1 — первого полностью open-source гуманоидного робота!

Fourier N1 — это компактный робот ростом 1.3 м и весом 38 кг, способный развивать скорость до 3.5 м/с.

За плечами более 1000 часов полевых испытаний.

🌟 Всё открыто: → список комплектующих (BOM)
→ CAD-чертежи и 3D-модели
→ спецификации приводов
→ управляющий код — на GitHub

⚙️ В основе робота — фирменные приводы FSA 2.0, обеспечивающие высокую устойчивость и манёвренность даже на пересечённой местности.

🔜 Github
🔜Документация (включайте автоперевод)

#ai #robots #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍68🔥4117
🦾 Berkeley Humanoid Lite — открытый человекоподобный робот

Калифорнийский университет Беркли представил проект Humanoid Lite — результат многолетних исследований и экспериментов по созданию простых в производстве человекоподобных роботов.

Платформа полностью придерживается принципов Open Hardware: в ней используются свободно распространяемое ПО, серийные комплектующие, доступные в розничной продаже, а также детали, напечатанные на 3D-принтере.

🌟 100 % open-source под MIT-лицензией: прошивки, схемы, BOM, STL-модели, RL-контроллеры
✔️ Open Hardware: доступные в рознице электро- и мехкомпоненты, детали печатаются на обычном FDM-принтере
➡️ Итоговая стоимость сборки — примерно 5 000 USD
⭐️ Модульная конструкция: легко превращается в квадропода или «кенавроподобного» робота
➡️ Экосистема: Isaac Lab / Isaac Sim / MuJoCo, телеметрия через SteamVR-контроллеры

Что доступно:

- Исходный код робота на C++ и Python
- Модели машинного обучения для контроллера движений
- Чертежи пластиковых деталей
- Полный список комплектующих с ссылками на покупку
- Пошаговый сборочный план
- Симуляционные окружения для тренировки и запуска робота


🌟 Что робот умеет уже сейчас
- локомоция: RL-контроллер приводит в заданную точку
- телеприсутствие: человек управляет манипулятором через VR-контроллеры
- навигация: экспериментальные алгоритмы обхода препятствий
- поддержка мелкой моторики

🔥 Как удалось удешевить:
- пластиковые шестерни, напечатанные на 3D-принтере
- циклоидные редукторы, повышающие надёжность пластика
- использование типовых драйверов и контроллеров без кастомных плат

*Clone → Print → Build → Hack!* 🤓

🔜 Проект
🔜 Код
🔜 Схемы

@ai_machinelearning_big_data


#robots #ai #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍6717🔥10🤩3
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Калифорнийский стартап объявляет о прорыве в области робототехники для повседневных задач с помощью ИИ π0.5 — модели «зрение-язык-действие».

Все, что видит робот, он видит впервые.

🧪 В экспериментах Робот успешно справился с уборкой посуды, застиланием постели и мытьем пола в незнакомых домах, демонстрируя полное понимание задачи, её разбиение на шаги и адаптацию к новым условиям.

➡️ Робот воспринимает команды от абстрактных ("убери посуду") до пошаговых ("подними кружку", "поставь в раковину"), демонстрируя потенциал обобщения для сложных роботизированных навыков.

Модель анализирует семантику задачи, разбивает её на шаги и генерирует команды для моторных систем. π0.5 умеет реагировать и на голосовые команды разной детализации — от «убери посуду» до точечных указаний

✔️ Подробнее про π0.5 мы писали в новостном дайджесте

@ai_machinelearning_big_data

#robots #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
127👍67🔥46🥰7🍓4😁1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 NVIDIA научили гуманоидных роботов двигаться как люди — прямо из симуляции в реальный мир !

Джим Фан (Директор по ИИ в NVIDIA) рассказал, что их команда добилась впечатляющего результата: роботы научились ходить и ориентироваться в пространстве без обучения в реальном мире.

Всё обучение прошло в симуляции, и после этого роботы сразу были отправлены на выполнение задач в открытом пространстве.

🌟 Что особенно впечатляет:

➡️ Обучение, которое заняло бы 10 лет в реальности, было сжато всего в 2 часа симуляции.

✔️ Как это возможно:

- Нет физических ограничений. В симуляции робот может падать и вставать хоть миллион раз без поломки. В реальности он бы ломался.

- Ускорение времени. В симуляции нет ограничений «реального времени» — можно крутить процесс с любой скоростью, насколько позволяет железо.

- Параллельное обучение. Можно сразу запускать много виртуальных роботов и собирать опыт с них всех одновременно.

Для обучения не понадобились гигантские модели -всего 1.5 миллиона параметров (не миллиардов!) хватило, чтобы смоделировать «подсознательную механику» движения человеческого тела.

Очень мощный шаг для развития embodied AI и робототехники 🚀

➡️ Полное выступление

@ai_machinelearning_big_data

#ai #robots #nvidia #future
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥199👍5426🤔11👀11🤩3😁2
✔️ Новое видео с Optimus,
которое опубликовал Илон Маск - выглядит интеерснее, чем может показаться на первый взгляд.

Впервые Optimus двигается в танце с участием нижней части тела —
раньше его ноги и ступни оставались неподвижными.

Если посмотреть последнее видео в замедленном режиме, можно заметить, что он не просто танцует — он подпрыгивает и держит равновесие на одной ноге.

Такой уровень динамического баланса и контроля невероятно сложно реализовать для человекоподобного робота.

С балансом у нового робота от Tesla — полный порядок!

Факты о роботе
🦿 1. Создан на базе автопилота Tesla
Optimus использует ту же систему обработки окружающего мира, что и автопилот Tesla — включая нейросети и камеры. Робот буквально «видит» как электромобиль Tesla.

⚙️ 2. Высота — 173 см, вес — около 56 кг
Это делает Optimus ростом со взрослого человека и достаточно лёгким, чтобы быть маневренным, но достаточно прочным для работы с физическими объектами.

🧠 3. Мозг — это Tesla FSD Chip

Внутри — собственный чип Tesla, разработанный для Full Self-Driving. Он обрабатывает видео в реальном времени и принимает решения, как вождения, так и манипуляций руками и телом.

🤖 4. Умеет поднимать до 20 кг и нести до 9 кг
Optimus спроектирован для выполнения задач, таких как переноска ящиков, компонентов на сборочных линиях и базовая логистика.

🎥 5. Первые версии уже помогают на фабрике Tesla
В 2023–2024 Tesla начала использовать Optimus на своих производственных линиях — например, для сортировки деталей и доставки мелких компонентов.

🕺 6. Новый уровень движения — он уже танцует и ходит

В 2025 году Optimus научился координировать движения нижней части тела. Ранее ноги были статичными — теперь он танцует, ходит и держит равновесие на одной ноге.

🔋 7. Полный день работы от одной зарядки
Цель — добиться автономной работы в течение рабочего дня на одном заряде, что делает его пригодным для фабрик и логистических центров.

🌍 8. Массовый рынок — конечная цель
Илон Маск заявил, что Optimus должен стоить меньше $20,000 — чтобы каждый мог позволить себе персонального робота.

@ai_machinelearning_big_data

#robots #ai #ml #Tesla #Optimus
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍124🔥4541😭9🤔6🤣6🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 Agibot и новый взгляд на форму робота

Проект Agibot предлагает переосмыслить привычный подход к дизайну роботов. Традиционно роботы создаются по образу человека — с двумя руками, двумя ногами, направленным вперёд зрением. Это объясняется тем, что окружающий мир спроектирован под человеческие потребности: лестницы, двери, инструменты.

Однако возникает вопрос: обязательно ли ограничиваться человеческой анатомией, а что если:

• Робот с тремя руками может выполнять больше задач одновременно
Три ноги обеспечивают лучшую устойчивость на неровной поверхности
Круговой обзор с помощью камер по периметру эффективнее человеческого зрения

🔧 Agibot демонстрирует первые шаги к объединению биомеханики и инженерного прагматизма. Вместо слепого копирования человека — попытка создать оптимальную форму для задач, стоящих перед роботами.

🚀 Будущее робототехники, возможно, лежит не в имитации, а в эволюции — с новыми решениями, выходящими за рамки антонимии человеческого тела.

@ai_machinelearning_big_data


#ai #robots #ml
👍91🔥22183🤬2🥱1🌭1🎄1
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 CMG World Robot Competition – Mecha Fighting Series — прошел первый в мире турнир по боксу (и другим видам единоборств) среди гуманоидных роботов. Организатором выступает China Media Group (CMG), китайская государственная медиа-корпорация

Соревнования: четыре команды операторов управляют роботами Unitree G1 в реальном времени. Формат — турнирные бои, где начисляют очки за удары разной степени (1 балл за удар руками, 3 за ноги).

@ai_machinelearning_big_data

#ai #robots #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10029🔥26🤬8💅3😁2🥱1
Media is too big
VIEW IN TELEGRAM
✔️PyRoki (Python Robot Kinematics Toolkit) от Berkeley

PyRoki — это open-source библиотека на Python для задач управления движением роботов. Она решает одну из главных задач в робототехнике — инверсную кинематику (IK), то есть определяет, как двигаться суставам робота, чтобы достичь нужной точки.

▶️ Что умеет PyRoki:
▪️ Инверсная кинематика
▪️ Оптимизация траектории
▪️ Перенос движений между разными роботами (motion retargeting)

🚀 Установка


git clone https://github.com/chungmin99/pyroki.git
cd pyroki
pip install -e .


Чем хороша:
Быстрее на 1.7× по сравнению с cuRobo
Работает на CPU, GPU и даже TPU
Написана полностью на Python — легко внедряется, не требует C++
Подходит для промышленных роботов, симуляторов, гуманоидов

Подходит для:
— инженеров робототехники
— разработчиков симуляций
— ML-исследователей в motion planning

▪️ Репозиторий: https://github.com/chungmin99/pyroki
▪️ Сайт: http://pyroki-toolkit.github.io
▪️ Статья: https://arxiv.org/abs/2505.03728

@ai_machinelearning_big_data


#ai #ml #robots
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍72🔥2623🎄7
🤖 RoboBrain 2.0 — ИИ для нового поколения роботов.

RoboBrain 2.0 — это open-source модель способная к широкому спектру задач: от восприятия окружения до управления роботами.

Её уже называют фундаментом для следующего поколения гуманоидов.

🔹 Поддерживает планирование, восприятие и действия в реальном мире
🔹 Заточен на легкую интеграцию (под капотом 7B параметров) в реальные проекты и роботизированные системы
🔹 Полностью открытый код

Архитектура:

• Обрабатывает изображения, длинные видео и визуальные данные высокого разрешения
• Понимает сложные текстовые инструкции
• Входные данные:
 — Визуальные — проходят через Vision Encoder + MLP Projector
 — Текстовые — превращаются в унифицированный токен-поток
• Всё подаётся в LLM Decoder, который выполняет рассуждение, строит планы, определяет координаты и пространственные связи

С такими темпами более чем реально, что уже к 2027 году мы увидим массовое производство продвинутых гуманоидных роботов.

ИИ выходит в физический мир — и делает это уверено.

Запуск:

git clone https://github.com/FlagOpen/RoboBrain2.0.git
cd RoboBrain

# build conda env.
conda create -n robobrain2 python=3.10
conda activate robobrain2
pip install -r requirements.txt


Github: https://github.com/FlagOpen/RoboBrain2.0
Hugging face: https://huggingface.co/collections/BAAI/robobrain20-6841eeb1df55c207a4ea0036/

@ai_machinelearning_big_data

#ai #ml #robots #ComputerVision #BAAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥2017🥰3
This media is not supported in your browser
VIEW IN TELEGRAM
Как сгенерировать миллиард демо-примеров для обучения роботов?

Проект Dex1B показывает, как это сделать просто — с помощью симуляции и генеративных моделей!

📌 Цель проекта: создать масштабный датасет для двух задач:
Grasping — захват объектов 🖐️
Articulation — манипуляции с подвижными частями робота

Как это работает:

1. Создание Seed-датасета
Сначала используется оптимизационный алгоритм, чтобы вручную (или полуавтоматически) собрать небольшой, но точный набор демонстраций — так называемый *Seed Dataset*.

2. Обучение генеративной модели
На основе Seed-датасета обучается DexSimple— простая C-VAE модель (Conditional Variational Autoencoder). Она умеет порождать новые сцены, основываясь на контексте: тип объекта, поза руки, желаемое взаимодействие.

3. Масштабирование до 1 миллиарда
С помощью DexSimple создаются миллиарды новых демонстраций. При генерации учитывается разнообразие поз и объектов: используется преднамеренное «смешение» данных, чтобы не переобучаться на узком распределении.

4. Симуляция и проверка
Все демонстрации валидируются в физическом симуляторе ManiSkill/SAPIEN. Только успешные взаимодействия остаются в финальном наборе.

✔️ Что внутри:

- Grasping-сцены (1 млн штук): построены на базе ассетов из Objaverse
- Articulation-сцены: используют объекты из PartNet-Mobility — богатая коллекция с подвижными частями (двери, ящики, рычаги и т.п.)
- Каждая сцена содержит: 3D-модель объекта, позу руки, физику взаимодействия и результат

Почему это важно:

- Ручной сбор миллиардов примеров невозможен — здесь это решается генеративным путём
- Dex1B создаёт разнообразные и физически валидные примеры
- Это открывает путь к масштабному обучению роботов с использованием имитационного обучения


🟡 Сайт проекта: https://jianglongye.com/dex1b)
🟡Статья : https://jianglongye.com/dex1b/static/dex1b.pdf

@ai_machinelearning_big_data

#ai #robots #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
38🔥20👍12🥰5
🔥 VLMgineer — когда робот сам себе конструктор

Основная идея VLMgineer - путь к роботам, которые сами изобретают нужные приборы под конкретные задачи, экономя время инженеров и расширяя границы автоматизации.

Что это
● Фреймворк, объединяющий Vision-Language-модель и эволюционный поиск.
● Полностью автоматизирует два процесса:
 1) проектирует физический инструмент;
 2) пишет пошаговый план, как этим инструментом пользоваться.

Как это работает
1️⃣ VLM получает описание задачи («забей гвоздь», «разбей лёд») и создаёт начальный эскиз инструмента + набор движений робота.
2️⃣ Симуляция проверяет, насколько успешно связка «инструмент + действие» решает задачу.
3️⃣ Эволюционный алгоритм вносит правки (меняет форму, размеры, материалы), VLM уточняет план.
4️⃣ Цикл повторяется, пока не найден оптимальный дизайн.

Никаких шаблонов и ручной настройки — всю «физическую креативность» выполняет модель.

Исследователи протестировали возможности VLMgineer по созданию инструментов и планов действий в сравнении с тремя типами участников:
• специалист по LLM
• эксперт по робототехнике
• обычный человек без технического бэкграунда

📊 Результаты:
VLMgineer показал на 64,7% более высокий средний успех выполнения задач, чем решения, предложенные людьми, скоро обещают дропнуть код проекта.

🔜 Подробнее: vlmgineer.github.io/release

@ai_machinelearning_big_data

#ai #robots #vlm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
45👍21🔥131🥰1🌭1
🤖 Gemini Robotics: автономный AI для роботов

Google представили Gemini Robotics On-Device — первую модель, объединяющую зрение, язык и действия, которая работает прямо на роботах, без постоянного подключения к интернету.

🔍 Что делает эту модель особенной:

🔹 Объединяет универсальность и точность Gemini, но работает локально
🔹 Моделька справляется со сложными задачами с двумя руками (манипуляции, сборка, перенос)
🔹 Обучается новым действиям всего по 50–100 демкам

Модель уже поддерживает разные типы роботов — от гуманоидов до промышленных двухруких манипуляторов. И это несмотря на то, что изначально она была обучена только на датасете ALOHA под управлением человеческих инструкций.

🛠 В догонку выпустили SDK Gemini Robotics — для разработчиков, которые хотят дообучить модель под свои нужды, включая тесты в физическом симуляторе MuJoCo.

🌐 Полностью автономная работа — идеально для кейсов с плохой связью или требованиями к высокой скорости отклика.

Gemini Robotics продолжает двигаться к будущему, где AI становится частью физического мира.

👉 Подробнее: https://goo.gle/gemini-robotics-on-device


@ai_machinelearning_big_data

#ai #robots #vlm #google #Gemini
41👍25🔥10🥰2
This media is not supported in your browser
VIEW IN TELEGRAM
🔋Робот, умеющий сам менять себе батарею

Китайская компания UBTech представила Walker S2 — гуманоидного робота нового поколения, способного автономно извлекать и заменять собственную батарею.


@ai_machinelearning_big_data

#ai #ml #robots
👍14745🔥19😢9😁4🤬4🦄2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Unitree A2 Stellar Hunter!

Новый четырёхногий робот весом всего 37 кг

🚀 Запас хода без нагрузки — 20 км

Работа стал: Легче, Прочнее, Быстрее.

Разработан специально для промышленных задач, где важны автономность, манёвренность и надёжность.

Инженерная мощь нового поколения — в компактном корпусе.

@ai_machinelearning_big_data


#ai #robots #Unitree
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥63👍2716🥱4👾2🍾1😭1