Athene-Llama3-70B - это чат-ориентированная модель, дообученная с помощью RLHF на основе Llama-3-70B-Instruct.
Значительное повышение производительности - это результат строгих оценочных показателей в процессе обучения, качественный собственный датасет и уникальный посттренинговый конвейер Nexusflow.
Улучшения по сравнению с исходной Llama-3-70B-Instruct:
Athene-70B показала результат 77,8% в Arena-Hard-Auto, что ставит ее в один ряд с GPT-4o (79,2%) laude-3.5-Sonnet (79,3%).
Для сравнения, базовая Llama-3-70B-Instruct в Arena-Hard-Auto демонстрировала результат в 46,6%.
Athene-70B использует тот же шаблон системного промпта, что и Llama-3-70B-Instruct.
📌 Лицензирование: CC-BY-NC-4.0
@ai_machinelearning_big_data
#AI #Nexusflow #LLM #ML #Athene70B
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍23❤7⚡4🔥3🥰1
Nexusflow представила семейство Athene-V2 из двух специализированных моделей: Athene-V2-Chat-72B, оптимизированную для чат-диалогов, и Athene-V2-Agent-72B, предназначенную для работы в качестве агента.
Обе модели построены на базе Qwen 2.5-72B-Instruct. Ключевая особенность Athene-V2 - концепция "границы Парето" в постобработке LLM.
По мере обучения модели с помощью RLHF на качественных данных достигается оптимальный баланс между метриками производительности, формируя "границу Парето". Дальнейшее улучшение отдельных характеристик становится возможным только за счет снижения других показателей.
Athene-V2-Chat-72B демонстрирует конкурентоспособные результаты по сравнению с GPT-4o в бенчмарках, превосходя его в задачах чата (Arena-Hard), завершения кода (bigcode-bench-hard) и математических задачах (MATH).
Athene-V2-Agent-72B превосходит GPT-4o в бенчмарках Nexus-V2, ориентированных на сложные сценарии вызова функций в корпоративной среде.
Athene-V2-Chat-72B использует шаблон чата Qwen2.5-72B-Instruct. Пример инференса с помощью библиотеки Transformers.
Athene-V2-Agent-72B можно использовать в любой совместимой с OpenAI API среде с помощью docker-образа VLLM. Примеры запуска погодного и RAG-агента.
⚠️ Athene-V2-Agent использует уникальный стиль промптов, который включен в docker-образ, поскольку исполняемые вызовы извлекаются из сгенерированного планирования модели.
Использование шаблона чата HuggingFace приведет к неоптимальным результатам в случае использования Athene-V2-Agent .
@ai_machinelearning_big_data
#AI #ML #LLM #AtheneV2 #Nexusflow
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥16👍9❤5