InkSight - модель, разработанная в Google Research, для конвертации изображений рукописных заметок в цифровой формат, воспроизводящий процесс написания. Эта технология, "derendering", позволяет преобразовать физический почерк в цифровую форму, сохраняя его индивидуальность и динамику.
InkSight в отличие от OCR , выполняет захват рукописного текста в виде набора штрихов, а не просто преобразует его в текст.
Процесс преобразования входного изображения с рукописным текстом разбит на три этапа: OCR для извлечения слов, обработка каждого слова по отдельности и замена пиксельного представления слов штрихами.
Для обучения модели используются пары изображений текста и соответствующих цифровых штрихов. Штрихи, полученные из траекторий письма в реальном времени, представляются в виде последовательности точек, а соответствующее изображение создается путем рендеринга этих штрихов.
Уникальный этап в обучении модели - "
ink tokenizer
", преобразующий точки в формат, удобный для обработки LLM.Архитектура InkSight вдохновлена моделью Pali и состоит из кодера ViT и кодер-декодера mT5. Были обучены три варианта модели:
Все модели используют контекст длиной 1024 для инференса и 128 для ввода.
Результаты качественной оценки с базовым методом GVS (General Virtual Sketching) показали, что модели InkSight более точно воспроизводят текстовое содержимое, игнорируя нерелевантный фон, и лучше справляются с окклюзиями по сравнению с GVS.
Количественная оценка показала, что большинство штрихов, сгенерированных моделью Large-i, сопоставимы по качеству с результатами, полученными вручную.
⚠️ В открытый доступ опубликована модель InkSight small-p в вариантах для запуска на CPU\GPU и TPU, дополнительные материалы, упомянутые в техническом отчете и ноутбук с инфренсом модели на нескольких примерах + пример кода для выполнения инференса.
# Clone the huggingface space
git clone https://huggingface.co/spaces/Derendering/Model-Output-Playground
# Install the dependencies (skip if you have them already)
pip install gradio gdown
# Run the Gradio Playground
python app.py
@ai_machinelearning_big_data
#AI #ML #InkSight #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25❤11🔥8🐳2😁1
MUVERA - алгоритм, разработанный Google Research, который сводит сложную задачу многовекторного поиска обратно к простому и быстрому MIPS, как в подходах с одним вектором.
Суть проста: вместо того чтобы работать с громоздким набором векторов, MUVERA сжимает его в единый вектор фиксированной длины, так называемый Fixed Dimensional Encoding (FDE). Главный трюк в том, что скалярное произведение этих новых FDE-векторов очень точно аппроксимирует исходную, «честную» метрику Чамфера.
На практике процесс выглядит как двухэтапный конвейер. Сначала MUVERA генерирует FDE для всех документов в базе и индексирует их с помощью обычного MIPS-солвера. Когда приходит запрос, для него тоже создается FDE, и система молниеносно находит небольшой список кандидатов. А уже затем этот короткий список переранжируется с использованием оригинальной, медленной, но точной метрики Чамфера. На выходе получаем и скорость, и качество.
В практическом сравнении с предыдущим SOTA методом PLAID, MUVERA показывает в среднем на 10% более высокую полноту выдачи при сокращении задержки на 90%. Чтобы достичь того же качества, алгоритму требуется отобрать в 5-20 раз меньше кандидатов для финального переранжирования.
Более того, эти FDE-векторы отлично сжимаются — до 32 раз с минимальной потерей качества.
Для тех. кто хочет попробовать, в репозитории проекта на Github есть реализации MUVERA на Python и C++ .
@ai_machinelearning_big_data
#AI #ML #LLM #MUVERA #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍57❤21🔥17🥰5😁1
Google разработала масштабируемый процесс *active learning*, который позволяет в десятки тысяч раз сократить объём размеченных данных, необходимых для тонкой настройки больших языковых моделей на сложных задачах — например, при модерации рекламного контента.
1. Стартовая модель (LLM-0) получает промпт и автоматически размечает огромный массив данных.
2. Кластеризация выявляет примеры, где модель путается (наиболее спорные и ценные для обучения).
3. Отбор данных: из этих кластеров выбирают информативные и разнообразные примеры.
4. Экспертная разметка — только для выбранных примеров.
5. Итерации: дообучение модели → новый отбор спорных примеров → разметка → снова обучение.
- Сокращение с 100 000 размеченных примеров до менее 500 при сохранении или улучшении качества.
- Улучшение метрики *Cohen’s Kappa* на 55–65 %.
- В больших продакшн-моделях — до 3–4 порядков меньше данных при сопоставимом или лучшем качестве.
Это метрика, которая показывает, насколько два "судьи" (например, эксперт и модель) согласны между собой с поправкой на случайные совпадения.
- 0.0 — нет согласия (или хуже случайного)
- 0.41–0.60 — умеренное согласие
- 0.61–0.80 — значительное
- 0.81–1.00 — почти полное согласие
В задачах с дисбалансом классов Kappa даёт более честную оценку, чем обычная точность (accuracy).
Чем лучше предыдущих методов:
- Точечная разметка: размечаются только самые информативные примеры.
- Масштабируемость: метод применим к наборам данных с сотнями миллиардов примеров.
- Экономия ресурсов: меньше времени и затрат на разметку.
- Быстрая адаптация: подходит для доменов с быстро меняющимися правилами (реклама, модерация, безопасность).
При умном отборе данных LLM можно адаптировать в тысячи раз быстрее и дешевле, чем при традиционном обучении на больших размеченных наборах.
#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency
@ai_machinelearning_big_data
#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍106🔥23❤19⚡3🥰3