Media is too big
VIEW IN TELEGRAM
Компания объявила о покупке Statsig - платформы, специализирующейся на продуктовой аналитике и A/B-тестировании. Ее основатель и CEO Statsig, Виджая Раджи, будет назначен на пост технического директора по приложениям (CTO of Applications) в OpenAI. Он возглавит продуктовую инженерию для ChatGPT и Codex. Вся команда Statsig присоединится к OpenAI, однако сама платформа продолжит работать независимо и обслуживать текущих клиентов.
openai.com
OpenAI анонсировала новые функции безопасности для ChatGPT для на защиты молодых пользователей и помощи в кризисных ситуациях. Первая новинка - система автоматической маршрутизации: при обнаружении признаков острого психологического стресса разговор будет передаваться "думающим" моделям. Они обучены с помощью метода Deliberative Alignment и дают более медленные и взвешенные ответы. Обновление планируется выпустить в течение 120 дней.
В ближайший месяц также появятся функции родительского контроля. Родители смогут связывать свои аккаунты с аккаунтами подростков от 13 лет, чтобы устанавливать ограничения и получать оповещения, если система зафиксирует у ребенка признаки кризисного состояния.
openai.com
В Швейцарии состоялся запуск Apertus — национальной LLM с открытым исходным кодом. Проект, разработанный консорциумом государственных институтов, позиционируется как альтернатива коммерческим моделям. Apertus полностью прозрачен: разработчики опубликовали не только саму модель, но и исходный код процесса обучения, документацию и использованные наборы данных.
Модель обучена на 15 трлн. токенов и поддерживает более 1000 языков, 40% данных - не на английском. Apertus создавалась с учетом швейцарских и европейских законов о защите данных и авторском праве, что делает ее привлекательной для местного бизнеса. Модель доступна на Hugging Face в 2 версиях: 8 и 70 млрд. параметров.
swissinfo.ch
Dolby Vision 2 - следующее поколение формата HDR, который постепенно заменит Dolby Vision и Dolby Vision IQ. Особенность новой технологии - использование ИИ для динамической подстройки качества изображения в реальном времени.
Система Content Intelligence будет анализировать сцены, учитывать условия освещения в комнате и с помощью машинного обучения корректировать картинку "на лету". Например, функция Precision Black улучшит детализацию в темных сценах, а Light Sense адаптирует изображение под окружающую среду.
Первым производителем, который внедрит Dolby Vision 2, станет Hisense, а первым чипом со встроенной поддержкой нового стандарта будет MediaTek Pentonic 800.
dolby.com
ЦЕРН применила методы машинного обучения для поиска редких событий - распада бозона Хиггса на два charm-кварка. Эта задача критически важна для проверки Стандартной модели, так как взаимодействие бозона с легкими кварками, из которых состоит обычная материя, до сих пор экспериментально не подтверждено.
Основная сложность заключалась в идентификации так называемых «джетов», порожденных именно charm-кварками. Для этого исследователи использовали графовую нейронную сеть, обученную на сотнях миллионов симуляций, а для отделения реальных событий от фонового шума была задействована сеть, архитектурно схожая с ChatGPT.
В результате анализа данных, собранных на БАК, удалось установить самые строгие на сегодняшний день ограничения на силу взаимодействия бозона Хиггса с charm-кварком. Это значительный шаг в понимании механизма, который придает массу фундаментальным частицам.
scitechdaily.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45❤24🔥9🥰6💘4👏1
Представьте, что вам прилетает требование на удаление данных в соответствии с GDPR или по авторскому праву, а исходного датасета, на котором обучалась модель, у вас уже нет. Переобучить модель с нуля - долго, дорого и не вариант.
Именно для таких безвыходных ситуаций, группа исследователей из Калифорнийского университета создала метод "разучивания" для моделей, который не требует доступа к исходным данным, но при этом дает строгие математические гарантии удаления информации.
Метод построен на использовании суррогатного датасета, который лишь статистически похож на оригинальный. Ключевая идея - калибровка добавляемого в модель шума, количество которого напрямую зависит от статистической дистанции (например, дивергенции Кульбака-Лейблера) между оригинальным и суррогатным распределениями.
Если коротко, то чем меньше суррогатный набор данных похож на тот, что был утерян, тем больше шума придется добавить, чтобы гарантировать, что модель действительно забыла ненужные данные и стала неотличима от гипотетически переобученной с нуля.
Для этого используется сама модель, ведь она неявно хранит информацию о распределении данных, на которых училась. С помощью метода стохастической градиентной динамики Ланжевена генерируется выборка, которая аппроксимирует исходное распределение, и уже на ее основе можно оценить расхождение с суррогатным датасетом.
На синтетических данных, где можно вычислить точную KL-дивергенцию, их метод, "Unlearn -", показал себя отлично. При увеличении расхождения между датасетами точность на тесте держится на уровне 72.3-72.7%, что сопоставимо с методом, имеющим доступ к исходникам "Unlearn +".
На реальных датасетах картина такая же. Для CIFAR-10, при параметре концентрации Дирихле=36, метод "Unlearn -" достигает 76.4% точности на тестовой выборке. Для сравнения, "Unlearn +" показал 76.5%, а полное переобучение - 76.7%. Разница минимальна.
Эффективность метода доказывает и метрика Forget Score (FS), которая показывает, насколько разучившаяся модель близка к переобученной с нуля. FS их метода практически идентичен идеальному показателю.
Гибкость подхода проверили и на разных архитектурах. На CIFAR-10 с моделью из двух свёрточных слоёв и одного линейного метод показал 80.5% точности на тесте, а версия с доступом к данным - 81.4%.
В эксперименте, где для модели на датасете USPS в качестве суррогата использовался MNIST, "Unlearn -" достиг 90.4% точности, что совсем немного уступает 91.3% у "Unlearn +" и 91.1% у полного переобучения
@ai_machinelearning_big_data
#AI #ML #LLM #Unlearning #UCR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥36👍16❤11🥰6😁2👀2💯1🗿1💘1
Genie Envisioner (GE) — унифицированная платформа от AgiBot Genie Team, где обучение, симуляция и оценка объединены в рамках одной видеогенеративной модели.
В основе всей системы лежит GE-Base, диффузионная видеомодель, натренированная на огромном датасете из миллиона эпизодов реальных манипуляций, записанных с нескольких камер, общей продолжительностью почти 3000 часов.
Модель училась предсказывать следующие кадры видео на основе текстовой инструкции и предыдущих наблюдений, таким образом формируя внутреннее представление о физике мира и динамике объектов.
Но предсказывать видео - это одно, а выполнять действия - совсем другое. За это отвечает второй компонент, GE-Act. Это легковесный модуль на 160 млн. параметров, который подключается к GE-Base и преобразует ее внутренние представления в конкретные команды для моторов робота.
Проще говоря, он переводит предсказания в исполняемые траектории. Причем делает это быстро: на генерацию последовательности из 54 шагов уходит всего 200 миллисекунд на NVIDIA RTX 4090, что позволяет использовать систему в реальном времени.
Замыкает троицу компонент GE-Sim - нейронный симулятор, построенный на той же GE-Base. Он позволяет прогонять тысячи симуляций в час для оценки политик без использования реального железа.
Чтобы объективно измерять качество таких видео-симуляторов, авторы разработали собственный бенчмарк EWMBench. Он оценивает не только визуальную правдоподобность, но и физическую консистентность и соответствие действий инструкциям.
На этом бенчмарке GE-Base
@ai_machinelearning_big_data
#AI #ML #Robotics #GenieEnvisioner #AgiBot
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤30👍18🔥11🥰5🤩1🥱1💘1
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Вопрос только один: что вы сделаете, если встретите его на улице?
@ai_machinelearning_big_data
#UnitreeG1 #robots #ai
@ai_machinelearning_big_data
#UnitreeG1 #robots #ai
😁109❤11🔥9👍6👀4🥰2😨1💘1
400 страниц про всё, что нужно знать об агентных системах. Автор — senior engineer в Google, выложил драфт для открытого ревью.
📖 В книге:
- продвинутые техники промптинга
- паттерны для мульти-агентов
- использование инструментов и MCP
- практические примеры с кодом
⚡ По сути, это полный справочник по построению умных агентов. Must-read для разработчиков AI.
@ai_machinelearning_big_data
#AI #Agents #Google #OpenSource #freebook
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍97❤31🔥26🤔3😨3😁1
Media is too big
VIEW IN TELEGRAM
Apple накрыла волна увольнений ведущих инженеров из ИИ-подразделения. Jian Zhang, возглавлявший исследования ИИ в области робототехники, перешел к Марку Цукербергу. За ним последовали еще 3 ключевых сотрудника из команды Foundation Models, которая занималась разработкой платформы Apple Intelligence. Всего, за последнее время, команда потеряла около 10 человек.
Основными причинами ухода называют как агрессивный наем со стороны конкурентов, предлагающих огромные зарплаты, так и внутренние проблемы. Низкий моральный дух в команде связывают со слабой реакцией на анонс Apple Intelligence и возможным решением компании использовать сторонние ИИ-модели вместо собственных разработок.
bloomberg.com
ИИ-платформа для работы с заметками NotebookLM получила крупное обновление аудиофункций. Теперь сервис может генерировать на основе пользовательского контента аудио-дорожки в 3 новых форматах.
Режим «Brief» создает быструю двухминутную аудиосводку по ключевым идеям. В режиме «Critique» два ИИ-собеседника анализируют текст, выступая в роли редакторов. Самый необычный формат — «Debate», который имитирует спор с противоположными точками зрения для стресс-теста идей. Кроме того, добавили новые мужские и женские голоса, чтобы дать пользователям больше возможностей для персонализации.
NotebookLM в сети Х
Этот релиз - вторая версия модели SFX для генерации звуковых эффектов по текстовому описанию. В v2 повысили качество звука и частотe дискретизации до 48 кГц, а максимальная длительность увеличена с 22 до 30 секунд. Добавилась возможность бесшовно создавать зацикленные звуки, что особенно полезно для фоновых эмбиент-дорожек. Генерация доступна как через веб-интерфейс, так и по API.
Обновление затронуло и связанный инструмент SB-1 Soundboard — браузерную звуковую панель, которая теперь также поддерживает модель v2 и получила поддержку MIDI. Новые звуковые эффекты доступны в форматах MP3 и WAV на всех тарифных планах, включая бесплатный.
ElevenLabs в сети Х
Amazon представил функцию Lens Live, которая обновляет визуальный поиск в мобильном приложении. Теперь пользователям не нужно делать снимок — достаточно навести камеру на объект, и система в реальном времени начнет показывать совпадающие или похожие товары из каталога. Прямо в интерфейсе камеры можно сфокусироваться на конкретной вещи, добавить ее в корзину или список желаний. В Lens Live интегрирован ИИ-ассистент Rufus, который предлагает краткие сводки о товаре и генерирует уточняющие вопросы.
Технически решение работает на базе легковесной on-device CV-модели для распознавания объектов. Для сопоставления с базой данных Amazon применяется модель глубокого обучения с использованием Amazon OpenSearch и SageMaker. Функция уже доступна части пользователей в США на iOS.
aboutamazon.com
Microsoft совместно с банком Barclays разработала архитектуру аналогового оптического компьютера (AOC) для решения задач оптимизации и ИИ. Согласно исследованию, опубликованному в Nature, новая система решает "проблему Фон Неймана", объединяя вычисления и память, и не нуждается в цифро-аналоговых преобразованиях.
Расчетная производительность AOC - 500 TOPS на ватт при 8-битной точности. Это делает его более чем в 100 раз энергоэффективнее топовых графических процессоров. Система построена на базе доступных компонентов: проекторы, линзы и сенсоры, а вычисления производятся за счет изменения интенсивности проходящего света.
Microsoft планирует поделиться с научным сообществом алгоритмом-решателем и цифровым двойником установки для дальнейшего изучения технологии.
news.microsoft.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥59❤28👍18💘1
Tencent опубликовали довольно интересный проект - POINTS-Reader. Это VLM для OCR английского и китайского языков на 4 млрд. параметров на базе Qwen2.5-3B-Instruct, которая обошла GPT-4o и Gemini на бенче
OmniDocBench
.POINTS-Reader - это философия предельной простоты c прямолинейным конвейером: на вход подается изображение документа и фиксированный промпт, а на выходе получается извлеченный текст.
Никаких этапов постобработки, скриптов для очистки или дополнительных моделей — результат сразу готов к использованию.
Помимо скромной базовой Qwen2.5, в POINTS-Reader использовали умеренный по нынешним меркам Vision Transformer -
NaViT
на 600 млн. параметров. И это осознанный инженерный шаг в угоду простоте и производительности.Современные фреймворки для инференса, будь то SGLang или vLLM, в первую очередь оптимизированы под LLM-часть, из-за чего громоздкий ViT становится узким местом и серьезно замедляет всю систему.
Такая компактная архитектура превосходно показала себя на тестах. На комплексном
OmniDocBench
модель набрала 0.133 для английских документов и 0.212 для китайских. Эти цифры ставят POINTS-Reader в один ряд с гораздо более тяжелыми и сложными системами.Секрет проекта кроется в двухэтапной стратегии подготовки данных, которая полностью отказывается от дистилляции знаний у моделей-учителей.
На первом этапе модель получает базовые навыки OCR, обучаясь на синтетике. Дальше начинается самый интересный этап — непрерывная самоэволюция. Модель используется для генерации аннотаций на реальных документах, после чего лучшие из полученных образцов используются для ее дообучения. Этот итеративный процесс позволяет постоянно повышать качество как самой модели, так и генерируемых ею данных.
Этот метод к самосовершенствованию описан в техотчете как очень гибкий и применимый, по словам Tencent, практически к любой другой архитектуре.
Модель пока не очень уверенно справляется со сложными макетами, вроде газетной верстки, что может приводить к повторению или пропуску контента. Аналогичные трудности возникают и при обработке рукописного текста, например, в чеках или заметках. Кроме того, на данный момент POINTS-Reader поддерживает только английский и китайский языки.
@ai_machinelearning_big_data
#AI #ML #VLM #POINTSReader #Tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤38👍16🔥5🥰2💋2💘1
UDR — настраиваемый агент для глубокого ресёрча, который «оборачивается» вокруг любого LLM.
Почему это важно:
По сути, это гибкий ресёрч-агент, который можно адаптировать под любой рабочий процесс.
@ai_machinelearning_big_data
#NVIDIA #UDR #UniversalDeepResearch #AI #LLM #ResearchAgent #AIAgents #DeepResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍73❤24🔥11😁1🤔1👀1💘1
Модельку можно запускать прямо на телефоне или ноутбуке, без интернета и с сохранением приватности.
EmbeddingGemma - новый лидер среди открытых многоязычных моделей <500M на MTEB
• 308M параметров, но по качеству обгоняет все модели до 500M (по MTEB)
• Работает очень быстро: менее 15 мс на EdgeTPU (256 токенов)
• Понимает 100+ языков
• Размер эмбеддингов можно уменьшать (768 → 128) без потери качества
• Контекст до 2000 токенов
• Уже доступна в Sentence-Transformers, LangChain, llama.cpp, transformers.js, Weaviate и др.
@ai_machinelearning_big_data
#AI #Google #Gemma #EmbeddingGemma #ML #DeepLearning #LLM #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍93🔥27❤22🥰2🤔2💘1
Media is too big
VIEW IN TELEGRAM
Функция "Проекты" (Projects) теперь доступна не только по подписке, но и для бесплатных пользователей ChatGPT. "Проекты" работают как цифровые рабочие пространства, где можно объединять чаты, справочные файлы и пользовательские инструкции, связанные с одной долгосрочной задачей. Основная фишка "Проектов" - встроенная память. ChatGPT запоминает контекст всех разговоров и документов в рамках конкретного проекта.
Вместе с этим OpenAI увеличила лимиты на загрузку файлов (до 5 для бесплатных аккаунтов, Plus до 25, а Pro до 40), добавила элементы управления памятью для каждого проекта и возможность их кастомизации. Обновление уже доступно в веб-версии и в приложении для Android, релиз для iOS ожидается в ближайшее время.
OpenAI в сети X
Китайский стартап разрабатывает платформу на базе агентного ИИ. Новая система проектируется для самостоятельного выполнения многошаговых задач от имени пользователя, требуя лишь минимальных начальных инструкций.
Ключевой особенностью ИИ-агента станет способность к самообучению и улучшению своих действий на основе предыдущего опыта. По информации от источников, знакомых с планами компании, основатель DeepSeek Лян Вэньфэн нацелен на запуск нового программного обеспечения уже в четвертом квартале этого года.
bloomberg.com
Облачный провайдер CoreWeave объявил о приобретении стартапа OpenPipe. Компания помогает разработчикам создавать кастомизированные ИИ-агенты с использованием RL через свой популярный опен-сорс инструментарий ART (Agent Reinforcement Trainer).
Эта сделка продолжает стратегию CoreWeave по расширению технологического стека, начатую с покупки платформы Weights & Biases в марте. Вся команда и клиентская база OpenPipe переходят в CoreWeave. Финансовые условия сделки стороны не раскрывают.
businesswire.com
Компания анонсировала создание собственной экосистемы для найма, которая объединит ИИ-платформу для поиска работы и расширенную программу сертификации, чтобы напрямую связать работодателей с кандидатами, чьи навыки в области ИИ можно верифицировать. Сама платформа будет использовать модели для сопоставления компетенций соискателей с требованиями вакансий, опираясь на собственную таксономию навыков.
Система сертификации вырастет из OpenAI Academy и предложит несколько уровней квалификации: от базовой ИИ-грамотности до продвинутого промпт-инжиниринга. Процесс обучения и сдачи экзаменов будет интегрирован в режим Study непосредственно в ChatGPT. Для корпоративных клиентов предусмотрена интеграция через SSO и API, а также механизм обратной связи для адаптации учебных курсов под реальные запросы рынка.
openai.com
Инженеры из Университет Эссекса при поддержке NVIDIA установили новый мировой рекорд в компьютерном моделировании. Эксперимент позволил впервые на практике наблюдать термодинамический предел — ключевое понятие, объясняющее, как свойства материи проявляются в макроскопических системах.
Для симуляции использовалась стоечная архитектура NVIDIA GB200 NVL72, которая позволила смоделировать поведение до 70 триллионов взаимодействующих частиц. Система достигла рекордной производительности почти в 115 000 обновлений решетки в наносекунду.
Результаты исследования, опубликованные в Physical Review Research, могут ускорить разработку новых дисплеев, магнитных материалов и дать более глубокое понимание фундаментальных свойств материи.
essex.ac.uk
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤30👍22🔥10💘1
Автор новостного ресурса Daily Dose of Data Science собрал самые интересные релизы крупных датасетов и моделей. Среди них — Yambda-5B от команды Яндекса, крупнейший в мире открытый музыкальный рекомендательный датасет.
В Yambda-5B 4,79 млрд обезличенных взаимодействий: прослушивания, лайки и дизлайки треков. Датасет уже привлек внимание мировых исследователей и обещает стать важным инструментом для развития рекомендательных систем.
🔗 Подробнее
@ai_machinelearning_big_data
#ai #ml #dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥33👍19🥰9❤8😁2🍓2🗿2💘1
Примеры выглядят кафово: Minecraft в швейцарских Альпах, на фестивале Burning Man или с альтернативными наборами персонажей.
Игровой мир можно менять «на лету», без подргузки.
Демку можно попробовать в вебе или использовать как мод для Minecraft.
@ai_machinelearning_big_data
#AI #Gaming #Minecraft #Oasis2 #DecartAI #GameDev #Mods #AIDemo #RealtimeAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤39👍16😐8🥰4🗿1💘1
BAAI представила InfoSeek — открытую методику синтеза данных и учебный контур для глубоких исследований. Задачи такого класса выходят за рамки обычного извлечения фактов: модель должна раскладывать вопрос на подзадачи, координировать многошаговое рассуждение и проверять ответы по источникам.
Эти задачи формализуются как HCSP — иерархические задачи удовлетворения ограничений, решение которых возникает только при последовательном сужении кандидатов на нескольких уровнях, где каждый внутренний узел сам является подзадачей, а зависимость между узлами образует дерево исследования.
Базовая идея проста: данные строятся вокруг древа исследования. Вершины - сущности или атомарные факты, ребра - проверяемые отношения из Википедии и открытых страниц. Алгоритм синтеза явно управляет структурой, чтобы исключить недоопределенность или ранние "короткие замыкания".
В HCSP ответ формально равен пересечению множеств, заданных текущими ограничениями и рекурсивными подвопросами; в терминах дерева корень — финальный ответ. Такой подход не только задаёт глубину и ширину рассуждения, но и делает каждый промежуточный шаг проверяемым по конкретным утверждениям.
Планировщик контролирует глобальную сложность, выбирая цель и тип расширения, а Браузер добывает факты и ссылки из страницы сущности. 4 операции покрывают весь жизненный цикл:
Качество контролируется по 2 осям: сложность и проверяемость. Сначала вопросы прогоняются "в лоб": если мощная базовая модель отвечает правильно без поиска, образец исключается, так было отсеяно около 2%. Затем проверяется решаемость на фиксированном наборе страниц с примесями-дистракторами и все двусмысленное удаляется.
Итог: датасет с 50 тыс. пар вопрос–ответ и 16,5 тыс. траекторий размышлений с метками извлечения.
Тесты показали, что InfoSeek переносится за пределы домашнего домена. На классических наборах для извлечения фактов и мульти‑hop вопросов компактная модель InfoSeeker‑3B опережает типовые RAG и агентные пайплайны.
На BrowseComp‑Plus с фиксированным корпусом 100K страниц и BM25 точность достигает 16,5% при среднем 8,24 обращения к поиску, что выше, чем у Gemini 2.5 Flash, Sonnet 4 и GPT‑4.1 и значительно выше Qwen3‑32B и Search‑R1‑32B.
Замена обучающего набора NQ+HQA на InfoSeek поднимает точность с 3,0% до 16,5% и делает запросы осмысленно более частыми.
@ai_machinelearning_big_data
#AI #ML #DeepResearch #Dataset #InfoSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42❤14🔥9💘1
По бенчмаркам Qwen3-Max-Preview опережает предыдущий флагман Qwen3-235B-A22B-2507.
Внутренние тесты и первые отзывы пользователей говорят о том, что модель стала сильнее в диалогах, агентных задачах, следовании инструкциям и обладает более широкими знаниями.
Qwen обещают очень скоро выпустить ещё что-то интересное.
Qwen3-Max-Preview уже доступна в Qwen Chat и через Alibaba Cloud API.
@ai_machinelearning_big_data
#AI #Qwen3 #LLM #AlibabaCloud #QwenChat
Please open Telegram to view this post
VIEW IN TELEGRAM
❤43🔥30👍11