The Idealist
14.2K subscribers
822 photos
3 videos
1.86K links
Переводы лучших англоязычных статей. Обратная связь - theidealistru@gmail.com

По вопросам рекламы - @MrMoneyMoustache или @onlybars.

Наша страница ВК: https://vk.com/theidealistru
加入频道
December 13, 2017
July 12, 2018
October 1, 2018
December 24, 2018
June 11, 2019
July 11, 2019
October 14, 2019
​​Nautilus: почему человеческий мозг столь эффективен?

Мы живём в эпоху экспансии компьютеров, превосходящих человека, казалось бы, почти во всём: от игры в Го и шахматы до суперсложных вычислений, которые машина может производить с высокой точностью за доли секунд. Но говорить о том, что всех нас в ближайшее время заменят роботы рано. Человеческому мозгу есть что противопоставить компьютеру, одно из его уникальных свойств: это параллельная обработка разных потоков информации, значительно превосходящая по возможностям любые технологии - во всяком случае пока.

«Компьютерам в последние годы удалось победить людей-мастеров в сложных играх, таких как шахматы в 1990-х и совсем недавно в Го, а также в соревнованиях по энциклопедическим знаниям. На момент написания статьи, однако, люди одерживают победу над компьютерами в многочисленных реальных задачах — от идентификации велосипеда или конкретного пешехода на людной городской улице до плавной доставки чашки горячего кофе к губам — не говоря уже о концептуализации и творчестве».

https://theidealist.ru/superbrain/

#Nautilus #наука #мозг #компьютер #МашинноеОбучение
March 20, 2020
​​Aeon: у технологии распознавания лиц и френологии много общего

Распознавание лиц по праву можно считать уже технологией не будущего, но настоящего. В ближайшие 10 лет она будет буквально везде. Но наряду с очевидными плюсами за спиной этого эффективного инструмента скрывается зловещая тень лженаук прошлого: френологии и евгеники. Некоторые критики вообще ставят знак равенства по разрушительным последствиям между бесконтрольным распространением распознавания лиц и оборотом плутония. Конечно, камера на подъезде не убьёт вас радиацией, однако вы всё равно неиллюзорно рискуете вследствие ошибки машины оказаться, например, в списке потенциальных преступников. И дело не только в ошибках: сам подход мало того, что технологически несовершенен и научно не обоснован, так ещё и весьма неоднозначен с моральной точки зрения.

"В последние годы алгоритмы машинного обучения дают возможность правительствам и частным компаниям собирать все виды информации о внешнем виде людей. Несколько стартапов сегодня утверждают, что могут использовать искусственный интеллект (ИИ) для помощи в определении личностных качеств кандидатов на работу на основе их лиц. В Китае правительство первым использовало камеры наблюдения для выявления и отслеживания передвижений этнических меньшинств. Между тем некоторые школы используют камеры, которые отслеживают внимание детей во время уроков, засекая особенности движения лица и бровей. А несколько лет назад исследователи Сяолинь Ву и Си Чжан заявили, что разработали алгоритм идентификации преступников по форме лица, обеспечивающий точность 89,5%. Весьма напоминает идеи 19 века, в частности, работы итальянского криминолога Чезаре Ломброзо, который утверждал, что преступников можно распознать по скошенным, «звериным» лбам и ястребиным носам".

https://theidealist.ru/phrenology/

#Aeon #общество #технологии #ИИ #МашинноеОбучение #френология
May 28, 2020
Wired: роботизированные системы контроля качества получают всё большее распространение

Британская компания P2i производит и устанавливает водоотталкивающие нанопокрытия для смартфонов и других гаджетов. Обычно их инженеры работают на фабриках заказчиков, выявляя и решая проблемы качества на месте. Но в современном мире многим производителям пришлось столкнуться с ограничением авиаперелётов и закрытием границ, а значит - и экстренно внедрять новые подходы и технологии в работе. Для P2i такой технологией стал «робот-контролёр», позволяющий инженерам или же машине удалённо тестировать изделия на предмет брака и соответствия требуемым стандартам качества.

«Компания использует разработку стартапа Instrumental. Камеры, расставленные вокруг аппаратов P2i, проверяют смартфоны после их обработки, и алгоритм выдает предупреждение, если выявляет недостатки. «Эта система сейчас является нашей основной методологией контроля качества» — говорит Харкридер. Компания может на лету и удалённо корректировать допустимые погрешности, «что раньше звучало как фантастика». Пандемия заставила многие компании переосмыслить сложившуюся практику. В некоторых местах дистанционный контроль и машинное обучение заменяют работу живых сотрудников. Пока речи о полной замене человека на производстве не идёт, но системы, подобные той, что используется P2i, показывают, как ИИ может помочь машинам занять свою нишу».

https://theidealist.ru/robotinspector/

#машинноеобучение #ИИ #пандемия #автоматизация #роботы #промышленность
July 7, 2020