⚡️شتاب دهند Agent Lightning؛ شتابدهندهی جدید مایکروسافت برای آموزش ایجنتهای LLM
دیگر نیازی به بازنویسی ایجنت نیست! با فریمورک **Agent Lightning**، میتوانید ایجنتهای مبتنی بر زبان را بدون تغییر در کد، به کمک **یادگیری تقویتی (RL) آموزش و بهینهسازی کنید.
🔧 ویژگیهای کلیدی:
▪️ بدون نیاز به تغییر در کد ایجنت
▪️ پشتیبانی از فریمورکهایی مانند LangChain، AutoGen، OpenAI Agents SDK، Semantic Kernel و...
▪️ اتصال ایجنت با استفاده از sidecar و جمعآوری دادههای رفتاری
▪️ ارزیابی عملکرد ایجنت در مراحل مختلف (state، action، reward)
▪️ امکان بهینهسازی رفتار ایجنت حتی بر اساس سیگنالهای میانی، نه فقط نتیجه نهایی
▪️ قابلیت اتصال به پایپلاینهای موجود در پروژههای صنعتی یا پژوهشی
🎯 مناسب برای پروژههای تولید کد، پرسوجوی SQL، اتوماسیون وظایف پیچیده و حتی Multi-Agent Systems
📄 مقاله: (https://arxiv.org/abs/2508.03680)
🔗 گیتهاب:(https://github.com/microsoft/agent-lightning)
🌐 وبسایت: (https://www.microsoft.com/en-us/research/project/agent-lightning)
#هوش_مصنوعی #LLM #Agent #یادگیری_تقویتی #Microsoft #LangChain #AutoGen #MLOps
@rss_ai_ir 🚀
دیگر نیازی به بازنویسی ایجنت نیست! با فریمورک **Agent Lightning**، میتوانید ایجنتهای مبتنی بر زبان را بدون تغییر در کد، به کمک **یادگیری تقویتی (RL) آموزش و بهینهسازی کنید.
🔧 ویژگیهای کلیدی:
▪️ بدون نیاز به تغییر در کد ایجنت
▪️ پشتیبانی از فریمورکهایی مانند LangChain، AutoGen، OpenAI Agents SDK، Semantic Kernel و...
▪️ اتصال ایجنت با استفاده از sidecar و جمعآوری دادههای رفتاری
▪️ ارزیابی عملکرد ایجنت در مراحل مختلف (state، action، reward)
▪️ امکان بهینهسازی رفتار ایجنت حتی بر اساس سیگنالهای میانی، نه فقط نتیجه نهایی
▪️ قابلیت اتصال به پایپلاینهای موجود در پروژههای صنعتی یا پژوهشی
🎯 مناسب برای پروژههای تولید کد، پرسوجوی SQL، اتوماسیون وظایف پیچیده و حتی Multi-Agent Systems
📄 مقاله: (https://arxiv.org/abs/2508.03680)
🔗 گیتهاب:(https://github.com/microsoft/agent-lightning)
🌐 وبسایت: (https://www.microsoft.com/en-us/research/project/agent-lightning)
#هوش_مصنوعی #LLM #Agent #یادگیری_تقویتی #Microsoft #LangChain #AutoGen #MLOps
@rss_ai_ir 🚀
❤16🔥16👏16👍15🥰13😁13🎉13🙏1
🧠 مدل GPT-5 حتی در ورودیهای فوقطولانی هم دقت بالایی را حفظ میکند!
@rss_ai_ir
📊 نمودار بالا عملکرد مدلهای مختلف را در مواجهه با ورودیهای بسیار بلند (تا ۲۵۶ هزار توکن) مقایسه میکند. این تست با استفاده از معیار MRCR و وظیفهی “2 needle” اجرا شده که بررسی میکند آیا مدل میتواند اطلاعات کلیدی را از دل متن بسیار بلند پیدا کند یا نه.
🔝 نتیجه کاملاً روشن است:
مدل GPT-5 با اختلاف قابل توجه، در تمام طول ورودیها بالاترین نرخ تطابق (mean match ratio) را دارد و دقت آن حتی در ورودی ۲۵۶k همچنان نزدیک به ۹۰٪ باقی میماند.
📉 در مقابل:
نسخههای Nano و Mini از GPT-4.1 با افزایش طول ورودی بهشدت افت عملکرد دارند (تا زیر ۴۰٪)
مدلهای OpenAI O3 و O4-mini هم با وجود شروع قوی، از ۶۴k به بعد دچار افت دقت میشوند
🎯 این یعنی GPT-5 نه تنها برای مکالمات یا تحلیلهای کوتاه، بلکه برای کاربردهای پیچیده با متنهای بسیار طولانی (مثل اسناد حقوقی، مقالات علمی، یا پایگاه دادههای متنی) انتخابی بیرقیب است.
#GPT5 #هوش_مصنوعی #OpenAI #طول_ورودی_بلند #LLM #بازیابی_اطلاعات #MemoryDepth #متن_طولانی #AItools #مدل_زبانی_پیشرفته
@rss_ai_ir
@rss_ai_ir
📊 نمودار بالا عملکرد مدلهای مختلف را در مواجهه با ورودیهای بسیار بلند (تا ۲۵۶ هزار توکن) مقایسه میکند. این تست با استفاده از معیار MRCR و وظیفهی “2 needle” اجرا شده که بررسی میکند آیا مدل میتواند اطلاعات کلیدی را از دل متن بسیار بلند پیدا کند یا نه.
🔝 نتیجه کاملاً روشن است:
مدل GPT-5 با اختلاف قابل توجه، در تمام طول ورودیها بالاترین نرخ تطابق (mean match ratio) را دارد و دقت آن حتی در ورودی ۲۵۶k همچنان نزدیک به ۹۰٪ باقی میماند.
📉 در مقابل:
نسخههای Nano و Mini از GPT-4.1 با افزایش طول ورودی بهشدت افت عملکرد دارند (تا زیر ۴۰٪)
مدلهای OpenAI O3 و O4-mini هم با وجود شروع قوی، از ۶۴k به بعد دچار افت دقت میشوند
🎯 این یعنی GPT-5 نه تنها برای مکالمات یا تحلیلهای کوتاه، بلکه برای کاربردهای پیچیده با متنهای بسیار طولانی (مثل اسناد حقوقی، مقالات علمی، یا پایگاه دادههای متنی) انتخابی بیرقیب است.
#GPT5 #هوش_مصنوعی #OpenAI #طول_ورودی_بلند #LLM #بازیابی_اطلاعات #MemoryDepth #متن_طولانی #AItools #مدل_زبانی_پیشرفته
@rss_ai_ir
👍2🔥1👏1
🚀 پیشرفت گوگل: کاهش ۱۰هزار برابری نیاز به داده برای فاینتیون LLM
@rss_ai_ir
🔍 گوگل روشی مقیاسپذیر در Active Learning توسعه داده که حجم داده برچسبخورده موردنیاز برای آموزش مدلهای زبانی بزرگ (LLM) را در وظایف پیچیده – مثل مـدراتـیـون محتوای تبلیغاتی – تا دهها هزار برابر کاهش میدهد.
---
🛠 مراحل کار
1. مدل اولیه (LLM-0) روی کل داده پیشبینی و برچسبگذاری خودکار انجام میدهد.
2. دادهها خوشهبندی میشوند تا سختترین و مبهمترین نمونهها شناسایی شود.
3. تنها نمونههای متنوع و با بیشترین ارزش یادگیری انتخاب میشوند.
4. این نمونهها توسط کارشناسان انسانی برچسبگذاری میشوند.
5. فرآیند آموزش → انتخاب نمونههای دشوار → برچسبگذاری → آموزش مجدد چند بار تکرار میشود.
---
📊 نتایج کلیدی
* کاهش از ۱۰۰هزار نمونه برچسبخورده به کمتر از ۵۰۰ نمونه با حفظ یا بهبود کیفیت.
* بهبود معیار Cohen’s Kappa بین ۵۵ تا ۶۵ درصد.
* در مدلهای بزرگ عملیاتی: صرفهجویی ۳ تا ۴ مرتبهای در داده با کیفیت برابر یا بهتر.
---
📌معیار Cohen’s Kappa چیست؟
معیاری برای سنجش میزان توافق بین دو ارزیاب (مثلاً کارشناس و مدل) با حذف اثر توافق تصادفی:
* ۰.۰ → بدون توافق
* ۰.۴۱–۰.۶۰ → توافق متوسط
* ۰.۶۱–۰.۸۰ → توافق قابل توجه
* ۰.۸۱–۱.۰۰ → توافق تقریباً کامل
مزیت نسبت به Accuracy: مناسبتر برای دادههای با توزیع نامتوازن کلاسها.
---
💡 مزیتهای روش گوگل
* برچسبگذاری فقط روی نمونههای مهم
* مقیاسپذیر برای دیتاستهای حجیم (صدها میلیارد نمونه)
* کاهش شدید هزینه و زمان برچسبگذاری
* انطباق سریع برای حوزههایی با تغییرات مداوم قوانین (مانند تبلیغات، امنیت، محتوای کاربری)
---
📥 مطالعه کامل در بلاگ گوگل:
[https://research.google/blog/achieving-10000x-training-data-reduction-with-high-fidelity-labels/]
#هوش_مصنوعی #ActiveLearning #گوگل #LLM #یادگیری_ماشین #DataEfficiency
@rss_ai_ir
@rss_ai_ir
🔍 گوگل روشی مقیاسپذیر در Active Learning توسعه داده که حجم داده برچسبخورده موردنیاز برای آموزش مدلهای زبانی بزرگ (LLM) را در وظایف پیچیده – مثل مـدراتـیـون محتوای تبلیغاتی – تا دهها هزار برابر کاهش میدهد.
---
🛠 مراحل کار
1. مدل اولیه (LLM-0) روی کل داده پیشبینی و برچسبگذاری خودکار انجام میدهد.
2. دادهها خوشهبندی میشوند تا سختترین و مبهمترین نمونهها شناسایی شود.
3. تنها نمونههای متنوع و با بیشترین ارزش یادگیری انتخاب میشوند.
4. این نمونهها توسط کارشناسان انسانی برچسبگذاری میشوند.
5. فرآیند آموزش → انتخاب نمونههای دشوار → برچسبگذاری → آموزش مجدد چند بار تکرار میشود.
---
📊 نتایج کلیدی
* کاهش از ۱۰۰هزار نمونه برچسبخورده به کمتر از ۵۰۰ نمونه با حفظ یا بهبود کیفیت.
* بهبود معیار Cohen’s Kappa بین ۵۵ تا ۶۵ درصد.
* در مدلهای بزرگ عملیاتی: صرفهجویی ۳ تا ۴ مرتبهای در داده با کیفیت برابر یا بهتر.
---
📌معیار Cohen’s Kappa چیست؟
معیاری برای سنجش میزان توافق بین دو ارزیاب (مثلاً کارشناس و مدل) با حذف اثر توافق تصادفی:
* ۰.۰ → بدون توافق
* ۰.۴۱–۰.۶۰ → توافق متوسط
* ۰.۶۱–۰.۸۰ → توافق قابل توجه
* ۰.۸۱–۱.۰۰ → توافق تقریباً کامل
مزیت نسبت به Accuracy: مناسبتر برای دادههای با توزیع نامتوازن کلاسها.
---
💡 مزیتهای روش گوگل
* برچسبگذاری فقط روی نمونههای مهم
* مقیاسپذیر برای دیتاستهای حجیم (صدها میلیارد نمونه)
* کاهش شدید هزینه و زمان برچسبگذاری
* انطباق سریع برای حوزههایی با تغییرات مداوم قوانین (مانند تبلیغات، امنیت، محتوای کاربری)
---
📥 مطالعه کامل در بلاگ گوگل:
[https://research.google/blog/achieving-10000x-training-data-reduction-with-high-fidelity-labels/]
#هوش_مصنوعی #ActiveLearning #گوگل #LLM #یادگیری_ماشین #DataEfficiency
@rss_ai_ir
🔥23❤21🥰21😁20🎉20👏17👍12🙏1