This media is not supported in your browser
VIEW IN TELEGRAM
💦 Моделирование жидкости (англ. fluid simulation) — область компьютерной графики, использующая средства вычислительной гидродинамики для реалистичного моделирования, анимации и визуализации жидкостей, газов, взрывов и других связанных с этим явлений. Имея на входе некую жидкость и геометрию сцены, симулятор жидкости моделирует её поведение и движение во времени, принимая в расчёт множество физических сил, объектов и взаимодействий. Моделирование жидкости широко используется в компьютерной графике и ранжируется по вычислительной сложности от высокоточных вычислений для кинофильмов и спецэффектов до простых аппроксимаций, работающих в режиме реального времени и использующихся преимущественно в компьютерных играх.
Существует несколько конкурирующих методов моделирования жидкости, каждый из которых имеет свои преимущества и недостатки. Наиболее распространёнными являются сеточные методы Эйлера, гидродинамика сглаженных частиц (англ. smoothed particle hydrodynamics — SPH), методы, основанные на завихрениях, и метод решёточных уравнений Больцмана. Эти методы возникли в среде вычислительной гидродинамики и были позаимствованы для практических задач в индустрии компьютерной графики и спецэффектов. Основное требование к данным методам со стороны компьютерной графики — визуальная правдоподобность. Иными словами, если наблюдатель при просмотре не может заметить неестественность анимации, то моделирование считается удовлетворительным. В физике, технике и математике, с другой стороны, основные требования предъявляются к физической корректности и точности моделирования, а не к её визуальному результату.
В компьютерной графике самые ранние попытки решить уравнения Навье — Стокса в трёхмерном пространстве были предприняты в 1996 году Ником Фостером (англ. Nick Foster) и Димитрисом Метаксасом (англ. Dimitris Metaxas). Их работа в качестве основы использовала более раннюю работу по вычислительной гидродинамике, которая была опубликована в 1965 году Харлоу (англ. Harlow) и Уэлшем (англ. Welch). До работы Фостера и Метаксаса многие методы моделирования жидкости были построены на основе специальных систем частиц, методах снижения размерности (типа двухмерные модели мелких водяных объёмов типа луж) и полу-случайных шумовых турбулентных полях. В 1999 году на SIGGRAPH Джос Стэм (англ. Jos Stam) опубликовал метод так называемых «стабильных жидкостей» (англ. Stable Fluids), который использовал полу-лагранжевый метод адвекции и неявные интеграции вязкости для обеспечения безусловно устойчивого поведения жидкости. Это позволило моделировать жидкости со значительно большим временным шагом и в общем привело к более быстрым программам. Позже, в 2001—2002 годах, этот метод был расширен Роном Федкивым вместе со своими сотрудниками, благодаря чему стало возможным обрабатывать сложную модель воды в трёхмерной сцене с использованием метода установленного уровня (англ. Level set method). #математика #физика #наука #gif #образование #разработка_игр #gamedev #math #physics
💡 Physics.Math.Code // @physics_lib
Существует несколько конкурирующих методов моделирования жидкости, каждый из которых имеет свои преимущества и недостатки. Наиболее распространёнными являются сеточные методы Эйлера, гидродинамика сглаженных частиц (англ. smoothed particle hydrodynamics — SPH), методы, основанные на завихрениях, и метод решёточных уравнений Больцмана. Эти методы возникли в среде вычислительной гидродинамики и были позаимствованы для практических задач в индустрии компьютерной графики и спецэффектов. Основное требование к данным методам со стороны компьютерной графики — визуальная правдоподобность. Иными словами, если наблюдатель при просмотре не может заметить неестественность анимации, то моделирование считается удовлетворительным. В физике, технике и математике, с другой стороны, основные требования предъявляются к физической корректности и точности моделирования, а не к её визуальному результату.
В компьютерной графике самые ранние попытки решить уравнения Навье — Стокса в трёхмерном пространстве были предприняты в 1996 году Ником Фостером (англ. Nick Foster) и Димитрисом Метаксасом (англ. Dimitris Metaxas). Их работа в качестве основы использовала более раннюю работу по вычислительной гидродинамике, которая была опубликована в 1965 году Харлоу (англ. Harlow) и Уэлшем (англ. Welch). До работы Фостера и Метаксаса многие методы моделирования жидкости были построены на основе специальных систем частиц, методах снижения размерности (типа двухмерные модели мелких водяных объёмов типа луж) и полу-случайных шумовых турбулентных полях. В 1999 году на SIGGRAPH Джос Стэм (англ. Jos Stam) опубликовал метод так называемых «стабильных жидкостей» (англ. Stable Fluids), который использовал полу-лагранжевый метод адвекции и неявные интеграции вязкости для обеспечения безусловно устойчивого поведения жидкости. Это позволило моделировать жидкости со значительно большим временным шагом и в общем привело к более быстрым программам. Позже, в 2001—2002 годах, этот метод был расширен Роном Федкивым вместе со своими сотрудниками, благодаря чему стало возможным обрабатывать сложную модель воды в трёхмерной сцене с использованием метода установленного уровня (англ. Level set method). #математика #физика #наука #gif #образование #разработка_игр #gamedev #math #physics
💡 Physics.Math.Code // @physics_lib
⚠️ Без этого ты вряд ли решишь 18 задачу на ЕГЭ 2025
За оставшиеся 3 месяца реально затащить параметры, если правильно ботать — и мы знаем, как это сделать 😎
Приходи на специальный марафон по решению параметров функциональным методом
‼️ Только до 12 марта ты сможешь попасть на него БЕСПЛАТНО.
Тебя ждут:
✔️ 15 дней теории и практики решения параметров функциональным методом.
✔️ Проверка заданий.
✔️ Опытные преподаватели, обучившие больше 2000 учеников, 300 из которых набрали 90+ баллов на ЕГЭ.
✔️ Крутые подарки, которые помогут тебе с подготовкой.
Успей зарегистрироваться — количество мест ограничено ⬇️
https://clck.ru/3HEGSy
За оставшиеся 3 месяца реально затащить параметры, если правильно ботать — и мы знаем, как это сделать 😎
Приходи на специальный марафон по решению параметров функциональным методом
‼️ Только до 12 марта ты сможешь попасть на него БЕСПЛАТНО.
Тебя ждут:
✔️ 15 дней теории и практики решения параметров функциональным методом.
✔️ Проверка заданий.
✔️ Опытные преподаватели, обучившие больше 2000 учеников, 300 из которых набрали 90+ баллов на ЕГЭ.
✔️ Крутые подарки, которые помогут тебе с подготовкой.
Успей зарегистрироваться — количество мест ограничено ⬇️
https://clck.ru/3HEGSy
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Насос без подвижных частей может перекачивать жидкость, но как? ⚡️
Электромагнитный насос [ магнитогидродинамический насос] — насос, предназначенный для перекачки расплавленных металлов, растворов солей и других электропроводящих жидкостей. Принцип действия электромагнитного насоса следующий. Внешнее магнитное поле устанавливается под прямым углом к нужному направлению движения жидкого вещества, через вещество пропускается ток. Вызванная таким образом сила Ампера перемещает жидкость.
Электромагнитные насосы используются для перемещения расплавленного припоя во многих машинах для пайки волной, для перекачки жидкометаллического теплоносителя в ядерных реакторах (например в реакторе БН-800, а также на ЯЭУ "Бук" и "Топаз") и в магнитогидродинамическом приводе.
Эйнштейном и Силардом была разработана модель холодильника, в котором электромагнитный насос приводил в движение расплавленный металл, который сжимал рабочий газ, пентан. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки
💡 Physics.Math.Code // @physics_lib
Электромагнитный насос [ магнитогидродинамический насос] — насос, предназначенный для перекачки расплавленных металлов, растворов солей и других электропроводящих жидкостей. Принцип действия электромагнитного насоса следующий. Внешнее магнитное поле устанавливается под прямым углом к нужному направлению движения жидкого вещества, через вещество пропускается ток. Вызванная таким образом сила Ампера перемещает жидкость.
Электромагнитные насосы используются для перемещения расплавленного припоя во многих машинах для пайки волной, для перекачки жидкометаллического теплоносителя в ядерных реакторах (например в реакторе БН-800, а также на ЯЭУ "Бук" и "Топаз") и в магнитогидродинамическом приводе.
Эйнштейном и Силардом была разработана модель холодильника, в котором электромагнитный насос приводил в движение расплавленный металл, который сжимал рабочий газ, пентан. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки
💡 Physics.Math.Code // @physics_lib
⚫️ Функция (Функции и графики) 1990
Функция — одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира. Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами.
🔴 Функция и графики. Раздел 1 (Функции и графики) 1975
Соответствия между множествами. Функция. Способы задания функции. Табличный способ задания функции. Задание функции формулой. График прямой пропорциональности. График обратной пропорциональности.
🔵 Функция и графики. Раздел 2 (Функции и графики) 1975
Определение линейной функции. График линейной функции. Угловой коэффициент прямой. Графическое решение системы уравнений. Функция у = а⋅х² и её график.
#научные_фильмы #видеоуроки #математика #math #алгебра #геометрия
💡 Physics.Math.Code // @physics_lib
Функция — одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира. Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами.
🔴 Функция и графики. Раздел 1 (Функции и графики) 1975
Соответствия между множествами. Функция. Способы задания функции. Табличный способ задания функции. Задание функции формулой. График прямой пропорциональности. График обратной пропорциональности.
🔵 Функция и графики. Раздел 2 (Функции и графики) 1975
Определение линейной функции. График линейной функции. Угловой коэффициент прямой. Графическое решение системы уравнений. Функция у = а⋅х² и её график.
#научные_фильмы #видеоуроки #математика #math #алгебра #геометрия
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
☢️ Невероятная история человека, который выжил в ускорителе частиц 🧠
Приготовьтесь к увлекательному путешествию в мир физики элементарных частиц и невероятной человеческой стойкости с нашим видео под названием «Невероятная история человека, который выжил на ускорителе частиц». В 1978 году в Институте физики элементарных частиц Протвино в Советском Союзе Анатолий Бугорский участвовал в исследованиях, направленных на разгадку тайн Вселенной. Однако то, что произошло в тот роковой день, не смог бы предсказать ни один учёный, каким бы опытным он ни был.
Произошла ужасная авария, вызвавшая критический отказ ускорителя частиц. В мгновение ока Анатолия Бугорского поразил луч высокоэнергетических протонов невиданной ранее силы. То, что произошло дальше, было поистине экстраординарным. Пучок протонов прошел через череп Бугорского, проходя через переднюю часть его мозга.
Удивительно, но Бугорский не только пережил этот почти фатальный опыт, но и продолжил работать как учёный. Его история стала легендарной в мире исследований в области физики элементарных частиц. Что делает эту историю еще более невероятной, так это тот факт, что Бугорский не отказался от своей страсти к научным исследованиям, несмотря на трудности, с которыми он столкнулся. После аварии он прожил относительно долгую жизнь, продолжая вносить вклад в науку и став выдающимся примером мужества и решимости.
В этом видео мы глубоко погружаемся в эту невероятную историю, изучая детали аварии, удивительные последствия для тела Бугорского и то, как его опыт бросил вызов нашему пониманию науки и устойчивости человека. Пойдем с нами, и мы расскажем историю Анатолия Бугорского, человека, который встал на путь одной из самых могущественных сил природы во имя науки. История, которая напоминает нам, что поиск знаний часто приводит нас в невообразимые места и может привести к научным достижениям, которые меняют наше понимание мира. #научные_фильмы #видеоуроки #физика #science #наука #ядерная_физика #атомная_физика
💡 Physics.Math.Code // @physics_lib
Приготовьтесь к увлекательному путешествию в мир физики элементарных частиц и невероятной человеческой стойкости с нашим видео под названием «Невероятная история человека, который выжил на ускорителе частиц». В 1978 году в Институте физики элементарных частиц Протвино в Советском Союзе Анатолий Бугорский участвовал в исследованиях, направленных на разгадку тайн Вселенной. Однако то, что произошло в тот роковой день, не смог бы предсказать ни один учёный, каким бы опытным он ни был.
Произошла ужасная авария, вызвавшая критический отказ ускорителя частиц. В мгновение ока Анатолия Бугорского поразил луч высокоэнергетических протонов невиданной ранее силы. То, что произошло дальше, было поистине экстраординарным. Пучок протонов прошел через череп Бугорского, проходя через переднюю часть его мозга.
Удивительно, но Бугорский не только пережил этот почти фатальный опыт, но и продолжил работать как учёный. Его история стала легендарной в мире исследований в области физики элементарных частиц. Что делает эту историю еще более невероятной, так это тот факт, что Бугорский не отказался от своей страсти к научным исследованиям, несмотря на трудности, с которыми он столкнулся. После аварии он прожил относительно долгую жизнь, продолжая вносить вклад в науку и став выдающимся примером мужества и решимости.
В этом видео мы глубоко погружаемся в эту невероятную историю, изучая детали аварии, удивительные последствия для тела Бугорского и то, как его опыт бросил вызов нашему пониманию науки и устойчивости человека. Пойдем с нами, и мы расскажем историю Анатолия Бугорского, человека, который встал на путь одной из самых могущественных сил природы во имя науки. История, которая напоминает нам, что поиск знаний часто приводит нас в невообразимые места и может привести к научным достижениям, которые меняют наше понимание мира. #научные_фильмы #видеоуроки #физика #science #наука #ядерная_физика #атомная_физика
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
Сцепление — это механическое устройство, которое передаёт крутящий момент от двигателя к колёсам и отключает ведущий вал от трансмиссии.
Большую часть времени сцепление включено, то есть диск прижат к маховику. Процесс включения и выключения сцепления происходит поэтапно:
▪️ Водитель нажимает педаль сцепления. Усилие через трос или по гидравлической магистрали передаётся на вилку.
▪️ Выжимной подшипник перемещается и утапливает лепестки диафрагменной пружины. Связь «двигатель-трансмиссия» разрывается.
▪️ Водитель выбирает нужную передачу и плавно отпускает педаль, скорость вращения маховика и ведомого диска уравниваются.
▪️ Диск сцепления прижимается к маховику и передача крутящего момента возобновляется.
📝 Интересный факт: У педали сцепления с гидравлическим приводом всегда имеется небольшой (обычно не более 10…15 мм на педали) свободный ход в самом начале нажатия педали, обусловленный наличием конструктивного зазора в 2…3 мм между шарнирно соединённым с педалью сцепления толкателем и приводимым им в движение поршнем главного цилиндра сцепления — это необходимо для того, чтобы обеспечить полное включение сцепления при отпускании педали и исключить его пробуксовку при движении автомобиля. У педали сцепления с тросовым приводом полный ход увеличивается по мере износа ведомого диска (педаль сцепления приподнимается относительно пола), вместе с ним увеличивается и её рабочий ход. Педаль следует отпускать плавно с самого начала, так как сцепление срабатывает всегда «внизу». Свободный ход педали обеспечивается регулировкой длины троса и составляет обычно порядка 30…40 мм. #научные_фильмы #видеоуроки #физика #science #наука #механика #техника
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Принцип работы: три или более угловых стержня соединяют пару вращающихся цилиндров. Каждое плечо стержня может свободно скользить и вращаться в своей «камере» в цилиндре. Стержни заставляют цилиндры вращаться синхронно друг с другом.
Применение:
▪️используется в качестве соединительной муфты в устройствах, таких как 90-градусный безредукторный угловой привод, насадка для трещотки и торцевого ключа;
▪️применяется в некоторых конструкциях велосипедов с приводом от вала;
▪️может функционировать как самостоятельный двигатель (при этом шатуны выполняют роль поршней), например, в паровых или воздушных двигателях.
#научные_фильмы #видеоуроки #физика #science #наука #механика #техника
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Репетитор IT mentor
Архимед изобрел примитивную форму гидростатических весов. Тогда плотность вещества он мог найти двумя способами.
Оба способа с математическим выводом формул рассмотрены здесь...
✏️ Подробно рассказываю в этой статье
Советую подписаться, в своем блоге на Дзен выпускаю очень много интересных статей: наука, физика, математика, IT, железо, технообзоры.
#математика #физика #геометрия #physics #разбор_задач
💡 Репетитор IT mentor // @mentor_it
Please open Telegram to view this post
VIEW IN TELEGRAM
Предыстория: задача была обнаружена на практике, во время лабораторных работы по исследованию атомно-силового микроскопа. В методичке к лабораторной данный интеграл был рассчитан неверно. Предлагаю нашим подписчикам совместными усилиями разобрать данный интересный параметрический интеграл. Ваши идеи оставляйте в комментариях:
📝 Обсуждение здесь ✏️
#задачи #math #физика #science #наука #physics #математика #разбор_задач
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM