Physics.Math.Code
141K subscribers
5.16K photos
1.96K videos
5.8K files
4.36K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
加入频道
Media is too big
VIEW IN TELEGRAM
♾️ Фигуры Лиссажу — это замкнутые плоские кривые, описываемые точкой, движение которой является суперпозицией двух взаимно перпендикулярных колебаний. Впервые были подробно изучены французским математиком Ж. А. Лиссажу в 1857–1858 гг..

Вид фигур Лиссажу зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний:
▪️ В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы. При разности фаз 0 или π вырождаются в отрезки прямых, а при разности фаз π/2 и равенстве амплитуд превращаются в окружность.
▪️ Если периоды обоих колебаний близки, то разность фаз линейно изменяется, вследствие чего наблюдаемый эллипс всё время деформируется.
▪️ При многократно отличающихся по величине периодах колебаний фигуры Лиссажу представляют собой запутанную картину и не наблюдаются, например, на экране осциллографа.

Применение в технике — сравнение частот: Если подать на входы «X» и «Y» осциллографа сигналы близких частот, то на экране можно увидеть фигуры Лиссажу. Этот метод широко используется для сравнения частот двух источников сигналов и для подстройки одного источника под частоту другого. Когда частоты близки, но не равны друг другу, фигура на экране вращается, причём период цикла вращения является величиной, обратной разности частот, например, при периоде оборота 2 секунды разница в частотах сигналов равна 0,5 Гц. При равенстве частот фигура застывает неподвижно, в любой фазе, однако на практике, за счёт кратковременных нестабильностей сигналов, фигура на экране осциллографа обычно чуть-чуть подрагивает. Использовать для сравнения можно не только одинаковые частоты, но и находящиеся в кратном отношении, например, если образцовый источник может выдавать частоту только 5 МГц, а настраиваемый источник — 2,5 МГц.
#физика #электродинамика #наука #physics #science #лекции #видеоуроки #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
👍8822❤‍🔥159🔥72
Принципы_математического_анализа_Уольтера_Рудина.zip
14.9 MB
📕 [International series in pure and applied mathematics] Principles of Mathematical Analysis [2024] Walter Rudin

The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.

📙 «Принципы математического анализа» (Международная серия по чистой и прикладной математике) Уольтера Рудина


Книга представляет собой современный курс математического анализа, написанный известным американским учёным. По стилю и содержанию она отличается от имеющихся традиционных курсов. Помимо обычно включаемого материала, книга содержит основы теории метрических пространств, теорию интегрирования дифференциальных форм на поверхностях, теорию интеграла и т.д. В конце каждой главы приводятся удачно подобранные упражнения (общим числом около 200). Среди них есть как простые примеры, иллюстрирующие теорию, так и трудные задачи, существенно дополняющие основной текст книги. Книга У. Рудина может служить учебным пособием для студентов математических и физических факультетов университетов, педагогических институтов и некоторых втузов. Она будет полезна аспирантам и преподавателям этих учебных заведений, а также инженерам, желающим расширить свои знания по математическому анализу.
#математика #calculus #наука #math #science #лекции #maths #mathematics #книги

💡 Physics.Math.Code // @physics_lib
👍4927🔥8🤷‍♂2🤩2😍2🥰1🙏1
📘 Секреты интересных интегралов [2020] Пол Дж. Нахин
📗 Inside Interesting Integrals [2020] Paul J. Nahin

💾 Скачать книги [RU + EN]

Издание доставит истинное удовольствие математикам, физикам, думающим студентам, а также всем читателям, кто еще только планирует стать великим учёным!

«Если мы действительно что-то знаем, то мы знаем это благодаря изучению математики» (Пьер Гассенди).

☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047 (СБП) ЮMoney: 410012169999048

#математика #calculus #наука #math #science #лекции #maths #mathematics #книги

💡 Physics.Math.Code // @physics_lib
🔥37👍1210🤯3😍3
Секреты_интересных_интегралов_RU+EN.zip
50.9 MB
📘 Секреты интересных интегралов [2020] Пол Дж. Нахин

Коллекция ловких трюков, хитрых подстановок и множество других невероятно искусных, удивительно озорных и дьявольски соблазнительных маневров для вычисления почти 200 запутанных определенных интегралов из физики, техники и математики плюс 60 сложных задач с полными, подробными решениями!
Какой смысл вычислять определенные интегралы, если вы не можете все их решить? То, что делает ценным нахождение конкретных интегралов – это не решения и ответы, которые мы получим, а скорее методы, которые мы будем использовать для получения этих ответов; методы, которые вы можете использовать для нахождения будущих интегралов.

Если вам что-то говорят имена Римана, Бернулли, Эйлера, Френеля, Дирихле, Фурье, Коши, Фейнмана — эта книга точно для вас. Издание доставит истинное удовольствие математикам, физикам, думающим студентам, а также всем читателям, кто еще только планирует стать великим учёным!

📗 Inside Interesting Integrals [2020] Paul J. Nahin

What’s the point of calculating definite integrals since you can’t possibly do them all?
What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future.
This book, now in its second edition, is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion.
Paul J. Nahin is professor emeritus of electrical engineering at the University of New Hampshire. He is the
author of 21 books on mathematics, physics, and the history of science, published by Springer, and the university presses of Princeton and Johns Hopkins. He received the 2017 Chandler Davis Prize for Excellence in Expository Writing in Mathematics (for his paper “The Mysterious Mr. Graham,” The Mathematical Intelligencer, Spring 2016). He gave the invited 2011 Sampson Lectures in Mathematics at Bates College, Lewiston, Maine.

#математика #calculus #наука #math #science #лекции #maths #mathematics #книги

💡 Physics.Math.Code // @physics_lib
👍4421🔥15🤩4🤯3
This media is not supported in your browser
VIEW IN TELEGRAM
💥 Первый лазер был изобретён американским физиком Теодором Майманом 16 мая 1960 года в исследовательской лаборатории Хьюза (Hughes Research Laboratories). Майман создал лазер вопреки мнению многих учёных, которые были уверены, что рубин не годится в качестве рабочей среды. 7 июля 1960 года на специально созванной пресс-конференции Майман объявил о создании лазера и рассказал о возможных областях его применения — связь, медицина, военная техника, транспорт, высокие технологии. Особенности конструкции:
▪️ В качестве активной среды — кристалл искусственного рубина ( оксид алюминия Al₂O₃ с небольшой примесью хрома Cr ).
▪️ Из кристалла был изготовлен стержень в виде цилиндра диаметром 1 и длиной 2 см, который в процессе работы подвергался облучению излучением импульсной газоразрядной лампы.
▪️ Резонатором служил резонатор Фабри-Перо, образованный серебряными зеркальными покрытиями, нанесёнными на торцы стержня.
▪️ Лазер работал в импульсном режиме, излучая свет с длиной волны 694,3 нм.
▪️ Майман предложил принцип накачки рабочего тела — короткими вспышками света от лампы-вспышки.
▪️ Зеркальные покрытия на торцах кристалла создавали положительную обратную связь, чтобы усилитель стал генератором.
▪️ Расчёты Маймана показали, что атомы хрома в кристалле рубина имеют подходящую систему энергетических уровней, которая делает возможной генерацию лазерного излучения.
▪️ Первый лазер Маймана стал отправной точкой для развития лазерных технологий. Лазеры стали незаменимыми инструментами в физике, химии, биологии и других научных дисциплинах, позволили учёным проводить более точные эксперименты и измерения.
▪️ Лазеры стимулировали дальнейшие исследования и инновации в области оптики и фотоники, привели к разработке новых типов лазеров, увеличению мощности и эффективности.

Импульсные лазеры мощнее непрерывных в плане мощности:
▫️Непрерывные лазеры характеризуются постоянной выходной мощностью, которая может достигать десятков киловатт. Это делает их идеальными для задач, требующих высокой мощности на протяжении длительного времени, таких как лазерная резка или сварка металлов.
▫️Импульсные лазеры работают иначе — они передают энергию в короткие, мощные вспышки. Это делает их менее энергоёмкими, поскольку импульсы могут достигать высокой пиковой мощности при минимальном общем энергопотреблении. Такой подход позволяет выполнять точные, деликатные работы, не перегревая материал.

Таким образом, для крупных производств, где необходима высокая мощность и стабильность, лучше подойдут непрерывные лазеры, а для точных задач, таких как микросварка, очистка поверхности или гравировка, рекомендуется использовать импульсные лазеры. #лазер #техника #science #физика #physics #производство

💥 Лазерная очистка поверхности старой монеты

💥 Лазерная резка

🔦 Лазерная сварка с разной формой луча

💥 Лазерное скальпирование микросхемы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍504734🔥18😱4🤩3🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Наплавка гребного винта лазерной сваркой ⚙️

Лазерная наплавка — метод нанесения нового слоя металла на деталь или заготовку с помощью сфокусированного лазерного излучения в среде защитного газа. Применяется для восстановления гребного винта — устранения эрозионных разрушений лопастей, которые возникают из-за коррозии и износа в морской воде.

Процесс наплавки гребного винта лазерной сваркой включает несколько этапов:
1. Подготовка поверхности — изношенный слой металла удаляют до чистового с помощью механической обработки (токарной, фрезерной или шлифовальной).
2. Выбор материала — для наплавки используют специальный металлический порошок или сплав, выбор зависит от свойств детали, условий эксплуатации и требований к восстановлению.
3. Лазерное воздействие — мощный лазерный луч фокусируется на поверхности, энергия лазера нагревает поверхность до температуры плавления, создавая «ванну расплава».
4. Наплавка материала — металлический порошок или проволока подаются на плавящуюся поверхность, материал моментально плавится и сливается с базовой поверхностью, образуя новый металлический слой.
5. Контроль нанесения — процесс контролируется с высокой точностью, позволяя равномерно наносить слой материала и достичь желаемых геометрических характеристик.
6. Охлаждение — после наплавки деталь быстро остывает, что предотвращает коробление и разупрочнение основного металла.
7. Финишная обработка — проточка, шлифовка или фрезерование для достижения нужной геометрии и шероховатости.

Специалисты отмечают, что лазерная наплавка позволяет увеличить срок службы гребного винта — наплавленный слой превосходит основной металл по физико-механическим свойствам, исключаются поры и несплавления. Однако есть и ограничения: заниженная мощность излучения (менее 1,4 кВт) может привести к образованию внутренних структурных дефектов (пор, несплавлений), а высокая мощность (более 2,2 кВт) — к дефектам структуры, перегревая ванну расплава. #лазер #техника #science #физика #physics #производство

💥 Первый лазер

💥 Лазерная очистка поверхности старой монеты

💥 Лазерная резка

🔦 Лазерная сварка с разной формой луча

💥 Лазерное скальпирование микросхемы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥77👍3218🤯52
Ионно-плазменный двигатель своими руками ⚡️

Ионный двигатель — тип электрического ракетного двигателя, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.

Достоинством этого типа двигателей является малый расход топлива и продолжительное время функционирования (максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трёх лет).
Недостатком ионного двигателя является ничтожная по сравнению с химическими двигателями тяга.

По сравнению с двигателями с ускорением в магнитном слое ионный двигатель обладает большим энергопотреблением при равном уровне тяги. Ионные двигатели используют повышенные напряжения, обладают более сложной схемой и конструкцией, что усложняет решение задачи обеспечения высокой надёжности и электрической прочности двигателя.

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с, по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.

В существующих реализациях ионного двигателя в качестве источника энергии, необходимой для ионизации топлива, используются солнечные батареи.

Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон и т. п.), но иногда и ртуть. В ионизатор подаётся топливо, которое само по себе нейтрально, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом, в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные ионы притягиваются к системе извлечения, состоящей из двух или трёх сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 Вольт на внутренней против -225 Вольт на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается, во-первых, для того, чтобы корпус корабля оставался нейтрально заряженным, а во-вторых, чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю. #физика #электродинамика #наука #physics #science #лекции #видеоуроки #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4837❤‍🔥10🔥8🤔53
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Что это такое и зачем используется?

Это гибкая связь между двумя вращающимися частями: стартер и двигатель, например.

Если вы хотите передавать крутящий момент между двумя нефиксированными, почти параллельными, несоосными осями, то выгодно использовать гибкие ремни.

▪️ Первоначально нет чистого крутящего момента, поэтому форма муфты определяется тем, что каждая полоса действует как пружина, и они действуют друг против друга.
▪️ Когда приводной двигатель начинает вращаться, крутящий момент становится наибольшей силой, поэтому муфта закручивается вверх.
▪️ Когда он достигает рабочей скорости, центростремительная сила лент становится наибольшей, поэтому средние части снова выскакивают.

Преимущества:
отличная изоляция между двигателем и нагрузкой, относительно высокий КПД при использовании постоянной угловой скорости/крутящего момента, очень простой и легкий ремонт.

Проблемы:
Максимальная крутящая нагрузка пропорциональна модулю Юнга лент, а также пределу прочности на разрыв. Медленная реакция.

Гибкая подвижная муфта (гибкая, подвижная, компенсирующая)
— это устройство, которое позволяет валам немного смещаться относительно друг друга, но при этом обеспечивает их надёжное соединение. Такие муфты компенсируют угловые, осевые и радиальные смещения валов, а также гасят вибрации и удары, возникающие при работе механизмов. #механика #физика #техника #physics #двигатель #engine #maths #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9821🔥153❤‍🔥1😱1
Media is too big
VIEW IN TELEGRAM
😵‍💫 Спиральный водяной насос

Водяной насос со спиральной трубой является методом откачки воды с подливным водоподъемным колесом, которое имеет лопатку, соединенную со спиральной трубой. По мере поворота колеса, лопатка обеспечивает спиральную трубу либо водой, либо воздухом. Давление от гидростатического напора, вырабатываемого водяным столбом, обеспеченного лопаткой, добавляется к давлению от предыдущих лопаток, и, таким образом, при повороте колеса увеличивается давление воды с каждым поворотом спирали. Основная характеристика спирального водяного насоса состоит в том, что он может откачивать воду без необходимости в электричестве или топливе. Он работает на энергии расхода воды. После сооружения, спиральный водяной насос способен выталкивать воду на высоту до 30 метров (горизонтальный толчок) и на расстояние до 70 метров (вертикальный толчок). Толчок воды (насколько вода будет вытолкнута горизонтально или вертикально) зависит от размера колеса Спирального Водяного Насоса, и сколько труб уложено вокруг колеса.

Спиральный водяной насос: Когда колесо вращается при помощи гидроэнергии, «заглатывание» обеспечивает поступление воды или воздуха в трубу при каждом
вращении. Сочетание воды и воздуха в трубе создает увеличенное давление при каждом вращении колеса. Данное созданное давление позволяет воде выталкиваться на определенную высоту.

😓 Самый интересный подвох: если в центре такого насоса гидравлическая нагрузка, а сами трубки очень узкие, то вода может поступать плохо из-за эффекта поверхностного натяжения. Наглядный пример посмотрите в видео. #гидростатика #опыты #физика #механика #physics #science #гидродинамика #изобретения

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4017🔥11🙈2🤯1😱1
📚 «Необыкновенная физика обыкновенных явлений» — книга Кл. Э. Суорца (перевод с английского — Е. И. Бутикова и А. С. Кондратьева). Вышла в двух томах [1986–1987]

💾 Скачать книги

Предназначена для учащихся общеобразовательных и профессиональной школ, а также для лиц, занимающихся самообразованием. В русском издании книга разделена на два тома:
▪️ Первый том — главы, посвящённые механике и термодинамике.
▪️ Второй том — главы, посвящённые волнам, оптике, электромагнетизму, физике микромира.

Некоторые положительные стороны, отмеченные читателями:
удачный подбор опытов и наблюдений, которые, не заменяя лабораторные работы, позволяют «прочувствовать» важные стороны изучаемых явлений;
лаконичность и конспективность, которые создают условия для лучшего усвоения и запоминания изученного.

Есть и негативные отзывы:
некоторые читатели отмечают, что автор иногда ограничивается рассмотрением некоторых частных случаев, что может спровоцировать читателя на неверные обобщения.

#физика #physics #science #подборка_книг #наука #опыты #задачи

💡 Physics.Math.Code // @physics_lib
🔥20👍1411🤩2👏1
Необыкновенная_физика_обыкновенных_явлений_1986_1987_Суорц.zip
8.8 MB
📚 «Необыкновенная физика обыкновенных явлений» — книга Кл. Э. Суорца (перевод с английского — Е. И. Бутикова и А. С. Кондратьева). Вышла в двух томах [1986–1987]

В книге дано современное изложение начал физики. Каждая графа начинается разделом "Знакомство с явлениями", в котором читателю предлагается проделать простейшие опыты и наблюдения с помощью легкодоступных подручных средств. Подобранные примеры с минимальным использованием математических средств позволяют развить физическую интуицию и умение применять знание физики в практической деятельности. В русском издании книга разделена на два тома. В первый том вошли главы, посвященные механике и термодинамике. Во второй том вошли главы, посвященные волнам, оптике, электромагнетизму, физике микромира. Для учащихся общеобразовательных и профессиональной школ, а также для лиц, занимающихся самообразованием.

▪️ Каждая глава начинается разделом «Знакомство с явлениями», в котором читателю предлагается проделать простейшие опыты и наблюдения с помощью легкодоступных подручных средств.
▪️ Изложение теоретического материала с минимальным использованием математических средств.
▪️ Текст сопровождается многочисленными рисунками, схемами, диаграммами и графиками, а зачастую — лаконичными простыми оценками и расчётами.

#физика #physics #science #подборка_книг #наука #опыты #задачи

💡 Physics.Math.Code // @physics_lib
👍31🔥1715🤩1
Media is too big
VIEW IN TELEGRAM
⚛️ 6 красивых физических опытов и их объяснение от Physics.Math.Code💤

▪️ Сложение колебаний динамика и прямолинейного потока вода, в результате которого получается бегущая волна около синусоидальной формы. Однако волна в некоторые моменты времени как будто замирает в воздухе. Связано это со стробоскопическим эффектом: частота камеры иногда точно совпадает с частотой колебаний динамика, в результате подвижная струя кажется неподвижной. Стробоскопический эффект при съёмке заключается в иллюзии неподвижности быстро движущихся тел.

▪️Неодимовый магнит может использоваться для сбора железной стружки благодаря высокой силе притяжения, которая характерна для этого типа магнитов. Стружка, особенно железосодержащая, притягивается к магниту, что позволяет улавливать её в разных областях. Магнит притягивает ферромагнитные частицы (железо, сталь). Цветные металлы и неметаллические загрязнения остаются незамеченными. Для очистки моторного масла от мелкой металлической стружки, которая образуется из-за трения деталей двигателя. Магнит размещают снаружи корпуса масляного фильтра, в области прохождения масла. Стружка притягивается и удерживается, предотвращая её дальнейшее циркулирование по системе.

▪️Уменьшение объема тела тесно связано с уменьшением его момента инерции J = (2/5) × m × r² (для сферы). Закон сохранения момента импульса гласит, что если момент внешних сил, действующих на механическую систему относительно центра оси, равен нулю, то момент импульса системы относительно этого центра с течением времени не изменяется. Если момент импульса L = J ×ω сохраняется, то при уменьшении момента инерции J (сжатие проволочного каркаса), частота вращения будет увеличиваться.

▪️ Рёбра жёсткости (складки) способны сделать бумагу твёрдой — они придают листу прочность, который не выдерживает в форме ровного прямого листа. Это происходит, если лист сложить так, чтобы получились рёбра жёсткости. Например: Сложить лист «гармошкой» — создаёт большое количество рёбер жёсткости. Рёбра жёсткости направляют деформацию «по сложному» пути. Например, если лист согнули под углом 90 градусов, напряжения, которые возникают в материале, распространяются не в продольной плоскости, а в поперечной. В этой плоскости согнуть лист сложнее, так как нужно разорвать межмолекулярные связи.

▪️Гироскопический эффект и прецессия — понятия, связанные с поведением вращающихся объектов, в частности гироскопов. Эти термины объясняют, как ось вращения гироскопа сохраняет направление в пространстве, а при внешнем воздействии ось не меняет направление сразу, а начинает плавно описывать движение. Гироскопический эффект — это способность быстро вращающегося тела удерживать своё положение в пространстве в плоскости своего вращения. Прецессия — это движение оси вращения гироскопа вокруг другой оси. Сила тяжести действует на гироскоп, создавая момент силы, который пытается заставить его опрокинуться. Однако гироскоп прецессирует, и ось его вращения остаётся направленной вверх. Если ось быстро вращающегося гироскопа слегка отклонить от вертикали, то она начнёт прецессировать вокруг вертикального положения, то есть совершать вращательное движение по поверхности конуса.

▪️Когда один шар сталкивается с цепочкой из нескольких одинаковых шаров, налетающий шар обменивается скоростью со вторым шаром, второй — с третьим и так далее. В результате все шары, кроме последнего, будут находиться в покое, а последний шар отскочит ровно с той же самой скоростью, с которой двигался налетающий шар. Это происходит благодаря закону сохранения импульса, согласно которому суммарный импульс системы тел до взаимодействия равен суммарному импульсу этой системы тел после взаимодействия.
#физика #physics #science #видеоуроки #наука #опыты #эксперименты #механика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🔥137🤯1🤩1🗿1