Physics.Math.Code
140K subscribers
5.15K photos
1.92K videos
5.78K files
4.32K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
加入频道
This media is not supported in your browser
VIEW IN TELEGRAM
〰️ Создание наклонных труб путем скручивания плоскостей, ограниченных синусоидами

Процесс создания такой трубы включает несколько этапов, которые выполняются в САПР-системах (например, AutoCAD, Inventor, «КОМПАС-3D»):

▪️1. Построение базового участка. Рисуется прямой или изогнутый участок, который будет служить основой для трубы.

▪️2. Создание эскиза. На торце базового участка делается скетч, задаётся угол, если нужно, дорисовывается изогнутый участок.

▪️3. Скручивание плоскостей. Плоскости, ограниченные синусоидами, скручивается вокруг базовой оси, при этом профиль трубы формируется автоматически.

▪️4. Редактирование трассы. Если трасса не устраивает, можно изменить расстояния и углы между плоскостями.

После этого получается 3D-модель трубы, гнутой в разных плоскостях, которая может быть использована для проектирования реальных конструкций.

Вопрос для подписчиков: Можете ли вы математически доказать, что две поверхности, ограниченные синусоидой, при скручивании дадут цилиндрическую трубу с определенным наклоном? И как наклон трубы в градусах будет зависеть от амплитуды синусоиды? #математика #mathematics #animation #math #геометрия #geometry #gif #science #опыты #задачи

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥11070👍42🤯7😱3❤‍🔥2🙈1
🌀 Математический арт и ряды Фурье

Вводится набор сигналов (рисунок), который затем передается в алгоритм дискретного преобразования Фурье, которые перерисовывает это с помощью конфигурации из окружностей. Что-то подобное, но в упрощенном виде встречается в стопоходящем механизме Чебышёва — механизм, преобразующий вращательное движение в движение, приближённое к прямолинейному.

В более общем виде, рядом Фурье элемента некоторого пространства функций называется разложение этого элемента по полной системе ортонормированных функций или другими словами по базису, состоящему из ортогональных функций. В зависимости от используемого вида интегрирования говорят о рядах Фурье — Римана, Фурье — Лебега и т. п.

Существует множество систем ортогональных многочленов и других ортогональных функций (например, функции Хаара, Уолша и Котельникова), по которым может быть произведено разложение функции в ряд Фурье.

Разложение функции в ряд Фурье является мощным инструментом при решении самых разных задач благодаря тому, что ряд Фурье прозрачным образом ведёт себя при дифференцировании, интегрировании, сдвиге функции по аргументу и свёртке функций.

Существуют многочисленные обобщения рядов Фурье в различных разделах математики. Например, любую функцию на конечной группе можно разложить в ряд, аналогичный ряду Фурье, по матричным элементам неприводимых представлений этой группы (теорема полноты).

Хотя первоначальной мотивацией было решение уравнения теплопроводности, позже стало очевидно, что те же методы можно применять к широкому кругу математических и физических задач, особенно тех, которые включают линейные дифференциальные уравнения с постоянными коэффициентами, для которых собственные решения являются синусоидами. Ряд Фурье имеет много применений в области электротехники, вибрации анализа, акустики, оптики, обработки сигналов, обработки изображений, квантовой механики, эконометрики, теории перекрытия-оболочки.#gif #геометрия #физика #математика #math #physics #geometry #Фурье #видеоуроки

💡 Physics.Math.Code // @physics_lib
👍6820🔥16❤‍🔥2🤔1
Media is too big
VIEW IN TELEGRAM
🌀 10 фракталов, которые стоит увидеть

Фрактал (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев.

▪️ В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.
▪️ Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил серийный выпуск своих антенн. C тех пор теория фрактальных антенн продолжает интенсивно развиваться. Преимуществом таких антенн является многодиапазонность и сравнительная широкополосность.
▪️ Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.
▪️ Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).
▪️ Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.
#gif #геометрия #математика #симметрия #geometry #maths #фракталы

Пытались ли вы запрограммировать отрисовку какого-нибудь фрактала? Напишите в комментариях, а лучше покажите что у вас получилось.

🐉 Кривая дракона

👩‍💻 Множество Мандельброта

🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]

🌀 10 фракталов, которые стоит увидеть

🔺 Так выглядит фрактал

👩‍💻 Треугольник Серпинского

📕 Фрактальная геометрия природы [2002] Бенуа Мандельброта

🌿 Папоротник Барнсли

📘 Фракталы повсюду Второе издание [2000] Майкл Ф. Барнсли

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2213🔥10❤‍🔥3🤯3🆒1