📙 Астро-физические величины [1977] Аллен К.У.
💾 Скачать книгу
Глава 1. Введение.
Глава 2. Основные постоянные и единицы.
Глава 3. Атомы.
Глава 4. Спектры.
Глава 5. Излучение.
Глава 6. Земля.
Глава 7. Планеты и спутники.
Глава 8. Межпланетная материя.
Глава 9. Солнце.
Глава 10. Нормальные звезды.
Глава 11. Звезды, имеющие особенности.
Глава 12. Типы звездного населения и окрестности Солнца.
Глава 13. Туманности, источники не оптического излучения и межзвездное пространство.
Глава 14. Скопления и галактики.
Глава 15. Дополнительные таблицы.
#астрономия #физика #космология #physics
💾 Скачать книгу
Глава 1. Введение.
Глава 2. Основные постоянные и единицы.
Глава 3. Атомы.
Глава 4. Спектры.
Глава 5. Излучение.
Глава 6. Земля.
Глава 7. Планеты и спутники.
Глава 8. Межпланетная материя.
Глава 9. Солнце.
Глава 10. Нормальные звезды.
Глава 11. Звезды, имеющие особенности.
Глава 12. Типы звездного населения и окрестности Солнца.
Глава 13. Туманности, источники не оптического излучения и межзвездное пространство.
Глава 14. Скопления и галактики.
Глава 15. Дополнительные таблицы.
#астрономия #физика #космология #physics
👍43🔥10😍3
📕 Бароэлектрический эффект и электромагнитные поля планет и звезд [2003] Григорьев В.И., и др.
📘 О физиках и физике [2004] Григорьев В.И.
📙 Электромагнетизм космических тел [2004] Григорьев В.И.
📗 Силы в природе [1969] Григорьев В.И., Мякишев Г.Я.
💾 Скачать книги
Для студентов, аспирантов и сотрудников физических специальностей, интересующихся вопросами гравитации.
👤 Григорьев Владимир Иванович (15 февраля 1926, Москва — 2008, Москва) — советский и российский учёный, специалист в области квантовой теории поля, геофизики, астрофизики. В 1948 году окончил физический факультет МГУ. В 1956 году получил ученую степень кандидата, а в 1974 доктора физико-математических наук. Работал в МГУ в должности профессора. #подборка_книг #физика #астрономия #электродинамика #космология
📘 О физиках и физике [2004] Григорьев В.И.
📙 Электромагнетизм космических тел [2004] Григорьев В.И.
📗 Силы в природе [1969] Григорьев В.И., Мякишев Г.Я.
💾 Скачать книги
Для студентов, аспирантов и сотрудников физических специальностей, интересующихся вопросами гравитации.
👤 Григорьев Владимир Иванович (15 февраля 1926, Москва — 2008, Москва) — советский и российский учёный, специалист в области квантовой теории поля, геофизики, астрофизики. В 1948 году окончил физический факультет МГУ. В 1956 году получил ученую степень кандидата, а в 1974 доктора физико-математических наук. Работал в МГУ в должности профессора. #подборка_книг #физика #астрономия #электродинамика #космология
👍40❤6🔥5😍2
Media is too big
VIEW IN TELEGRAM
🌕 Эволюция звёзд (звёздная эволюция) в астрономии — изменение со временем физических и наблюдаемых параметров звезды из-за идущих в ней термоядерных реакций, излучения ею энергии и потери массы. Часто говорят об эволюции как о «жизни звезды», начинающейся когда единственным источником энергии звезды становятся ядерные реакции, и заканчивающейся когда реакции прекращаются — у различных звёзд эволюция идет по-разному. Согласно астрофизическим моделям, срок жизни звезды, в зависимости от начальной массы, продолжается от нескольких миллионов до десятков триллионов лет, поэтому астрономы прямо наблюдают только очень малый по сравнению с продолжительностью жизни звезды период её эволюции, на протяжении которого эволюционные изменения практически незаметны.
Звёзды образуются из холодных разреженных облаков межзвёздного газа, которые сжимаются из-за гравитационной неустойчивости, в процессе сжатия разогреваются настолько, что в их недрах начинаются термоядерные реакции синтеза гелия из водорода. В момент начала термоядерных реакций протозвезда становится звездой главной последовательности (исключение могут составлять субкарлики и коричневые карлики), на которой будет находиться бо́льшую часть своей жизни — Солнце также находится на этой стадии звезды главной последовательности. #видеоуроки #научные_фильмы #химия #наука #физика #астрономия #космология
💡 Physics.Math.Code // @physics_lib
Звёзды образуются из холодных разреженных облаков межзвёздного газа, которые сжимаются из-за гравитационной неустойчивости, в процессе сжатия разогреваются настолько, что в их недрах начинаются термоядерные реакции синтеза гелия из водорода. В момент начала термоядерных реакций протозвезда становится звездой главной последовательности (исключение могут составлять субкарлики и коричневые карлики), на которой будет находиться бо́льшую часть своей жизни — Солнце также находится на этой стадии звезды главной последовательности. #видеоуроки #научные_фильмы #химия #наука #физика #астрономия #космология
💡 Physics.Math.Code // @physics_lib
👍69🔥11❤2🤯2❤🔥1😱1
🌖 Загадки Луны. Документальный Фильм
Представьте себе наш мир, опустошенные ветрами ураганной силы... с температурами, меняющимися от палящего зноя до леденящего холода. Представьте себе день, длящийся всего шесть часов, на планете, где только начинают развиваться примитивные формы жизни. Такой могла бы быть наша планета, если бы у Земли не было Луны. Её влияние на нашу планету огромно: от изменения рельефа земли, определения циклов времени и приливов до влияния на эволюцию жизни. Задолго до рождения человечества Луна уже была постоянным компаньоном Земле. Но вплоть до относительно недавних времен мы мало знали о ее истинной природе и даже о том, как она образовалась (честно говоря - и до сих пор толком не знаем). Документальный фильм из серии "С точки зрения науки" постарается раскрыть тайну загадочной спутницы Земли (ну, хотя бы доходчиво объяснить то, что знаем). #physics #астрономия #космология #физика #видеоуроки #лекции #научные_фильмы
💡 Physics.Math.Code
Представьте себе наш мир, опустошенные ветрами ураганной силы... с температурами, меняющимися от палящего зноя до леденящего холода. Представьте себе день, длящийся всего шесть часов, на планете, где только начинают развиваться примитивные формы жизни. Такой могла бы быть наша планета, если бы у Земли не было Луны. Её влияние на нашу планету огромно: от изменения рельефа земли, определения циклов времени и приливов до влияния на эволюцию жизни. Задолго до рождения человечества Луна уже была постоянным компаньоном Земле. Но вплоть до относительно недавних времен мы мало знали о ее истинной природе и даже о том, как она образовалась (честно говоря - и до сих пор толком не знаем). Документальный фильм из серии "С точки зрения науки" постарается раскрыть тайну загадочной спутницы Земли (ну, хотя бы доходчиво объяснить то, что знаем). #physics #астрономия #космология #физика #видеоуроки #лекции #научные_фильмы
💡 Physics.Math.Code
👍78❤13👏3👨💻3🔥2🤨2
Media is too big
VIEW IN TELEGRAM
⚫️ Танцы на грани тьмы: это конец физики? // In Search of the Dark: The End of Physics? [2015] 💥
С 1929 года, когда Эдвин Хаббл открыл расширение Вселенной, наука постоянно узнает всё более мелкие детали событий далекого прошлого. Выяснилось, что нынешний мир родился 13.8 млрд. лет назад из очень горячей материи после Большого Взрыва. Так же выяснилось, что элементы, из которых сформирована Вселенная, атомы, фотоны, нейтроны, в свою очередь, состоят из кварков, бозонов и лептонов. Космология и физика элементарных частиц, казалось, все нам объяснят. Но... у них не получается. Некая энергия ставит под сомнение самые незыблемые основы физики. Получается, что 95% Вселенной состоит из невидимого и непонятного вещества. Эти сущности наука называет тёмной материей и тёмной энергией. Миллиарды долларов! Тысячи предположений и теорий! И все ради одной цели - узнать, что же такое чёрная материя! Ответ на этот вопрос позволит разгадать космические головоломки и решить ряд острых проблем в физике. Но что если ученые не найдут то, что ищут? Что если это конец физики?
#физика #видеоуроки #наука #научные_фильмы #physics #космология #астрономия
💡 Physics.Math.Code // @physics_lib
С 1929 года, когда Эдвин Хаббл открыл расширение Вселенной, наука постоянно узнает всё более мелкие детали событий далекого прошлого. Выяснилось, что нынешний мир родился 13.8 млрд. лет назад из очень горячей материи после Большого Взрыва. Так же выяснилось, что элементы, из которых сформирована Вселенная, атомы, фотоны, нейтроны, в свою очередь, состоят из кварков, бозонов и лептонов. Космология и физика элементарных частиц, казалось, все нам объяснят. Но... у них не получается. Некая энергия ставит под сомнение самые незыблемые основы физики. Получается, что 95% Вселенной состоит из невидимого и непонятного вещества. Эти сущности наука называет тёмной материей и тёмной энергией. Миллиарды долларов! Тысячи предположений и теорий! И все ради одной цели - узнать, что же такое чёрная материя! Ответ на этот вопрос позволит разгадать космические головоломки и решить ряд острых проблем в физике. Но что если ученые не найдут то, что ищут? Что если это конец физики?
Великобритания, США
BBC Science Production, Science Channel
Документальный, космология
#физика #видеоуроки #наука #научные_фильмы #physics #космология #астрономия
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍80🤔12🔥10❤9😍4❤🔥3😱3
This media is not supported in your browser
VIEW IN TELEGRAM
Для горения Солнцу не нужен кислород. На самом деле солнечная энергия создаётся при помощи различных термоядерных реакций. Большая часть этой энергии производится благодаря синтезу водорода в гелий. Происходит это в ядре Солнца.
Температура поверхности Солнца (фотосферы) - 5500°C. При этом температура ядра составляет 15 миллионов градусов по Цельсию. Также у Солнца есть внешняя атмосфера, и её температура равняется примерно 1 500 000°C, а иногда даже 20 000 000°C.
Настоящий цвет Солнца - белый. Глаз человека воспринимает его как жёлтый из-за того, что атмосфера Земли рассеивает синий цвет лучше, чем красный. Из-за недостаточного количества синего цвета и кажется, что Солнце жёлтого оттенка.
Возраст Солнца - около 4,57 миллиарда лет. Считается, что оно будет «гореть» ещё примерно 5 миллиардов лет.
Излучение Солнца — основной источник энергии на Земле. Его мощность характеризуется солнечной постоянной — мощностью излучения, проходящего через площадку единичной площади, перпендикулярную солнечным лучам и расположенную на расстоянии одной астрономической единицы от Солнца (то есть на орбите Земли) вне земной атмосферы. Эта постоянная равна приблизительно 1,37 кВт/м².
#физика #опыты #эксперименты #наука #science #physics #космология #астрономия #видеоуроки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥87👍66🗿14❤🔥7😭6💊6👏3🤷♂2❤2🤔1😎1
Media is too big
VIEW IN TELEGRAM
🪐 Титан (др.-греч. Τιτάν) — крупнейший спутник Сатурна, второй по величине спутник в Солнечной системе (после спутника Юпитера Ганимеда), является единственным, кроме Земли, телом в Солнечной системе, для которого доказано стабильное существование жидкости на поверхности, и единственным спутником планеты, обладающим плотной атмосферой.
Титан стал первым известным спутником Сатурна — в 1655 году его обнаружил голландский астроном Христиан Гюйгенс. Титан был открыт 25 марта 1655 года голландским физиком, математиком и астрономом Христианом Гюйгенсом. Вдохновлённый примером Галилея, Гюйгенс вместе со своим братом Константином создал телескоп, имевший апертуру 57 мм и кратность увеличения более 50 раз.
При сопоставимых размерах с Меркурием и Ганимедом, Титан обладает обширной атмосферой, толщиной более 400 км. По современным оценкам атмосфера Титана состоит на 95 % из азота и 4 % метана, атмосферное давление у поверхности в 1,5 раза больше чем у Земли. Наличие метана в атмосфере приводит к процессам фотолиза в верхних слоях и образованию нескольких слоёв углеводородного «смога», из-за чего Титан является единственным спутником в Солнечной системе, поверхность которого невозможно наблюдать в оптическом диапазоне. #космос #астрономия #физика #механика #physics #science #наука #космология
💡 Physics.Math.Code // @physics_lib
Титан стал первым известным спутником Сатурна — в 1655 году его обнаружил голландский астроном Христиан Гюйгенс. Титан был открыт 25 марта 1655 года голландским физиком, математиком и астрономом Христианом Гюйгенсом. Вдохновлённый примером Галилея, Гюйгенс вместе со своим братом Константином создал телескоп, имевший апертуру 57 мм и кратность увеличения более 50 раз.
При сопоставимых размерах с Меркурием и Ганимедом, Титан обладает обширной атмосферой, толщиной более 400 км. По современным оценкам атмосфера Титана состоит на 95 % из азота и 4 % метана, атмосферное давление у поверхности в 1,5 раза больше чем у Земли. Наличие метана в атмосфере приводит к процессам фотолиза в верхних слоях и образованию нескольких слоёв углеводородного «смога», из-за чего Титан является единственным спутником в Солнечной системе, поверхность которого невозможно наблюдать в оптическом диапазоне. #космос #астрономия #физика #механика #physics #science #наука #космология
💡 Physics.Math.Code // @physics_lib
👍106❤26🌚6⚡3🤯3🙈2🗿2
Media is too big
VIEW IN TELEGRAM
🌍 Земля высохнет, если потеряет магнитное поле?
Кора, на которой мы существуем, довольно тонкая, десятки километров. В центре планеты – относительно небольшое железное ядро. Именно оно создает магнитное поле Земли. А магнитное поле защищает нас от космической радиации. Посмотрите на другие планеты, да хотя бы на Марс, где магнитного поля практически нет. Лучше всю жизнь прожить в Чернобыле, чем минуту на Марсе, радиация полощет непрерывным дождем. Защищают нас, конечно, и атмосфера, но в основном – магнитное поле.
Диаметр ядра около 7 тысяч километров. В самом центре ядра суперплотный железный шар диаметром 2400 км. Этот желвачок окружен, как капуста листьями, слоями, состоящими из опять же железа и некоторых других веществ.
И считалось, что внутреннее ядро Земли, то, которое бескомпромиссно железное, вращается чуть быстрее всего остального. И вот как это выглядит: в моменте ядро чуть забегает вперед от вращения всей планеты. А по итогам года накапливается разница побольше, и ядро опережает все остальные недра на одну десятую градуса.
Эту особенность ядра выяснили в 90-е годы, и думали, так всегда и бывает. Но – новые землетрясения, новые данные, и что-то сомнения стали закрадываться. Буквально в прошлом году появилась информация, что около 1970 года ядро едва двигалось, затем стало ускоряться, что и заметили в 1990-е. А потом? А что потом, как раз и раскрыли китайские ученые Йи Ян и Сяодун Сун. Согласно их новейшим данным, железное внутреннее ядро, то самое, которое, как перила эскалатора, заметно опережало вращение планеты в целом, остановилось. И вот-вот примется вращаться в обратную сторону. А не разнесет ли оно всю нашу бедную планету? Откуда берется магнитное поле? Его создает то самое железное ядро. Как именно, ученые спорят, но сам факт неоспорим.
Но теперь мы видим, что с этим ядром что-то не то. И спрашиваем: а не исчезает ли и магнитное поле? Если оно создается, например, вращением ядра, а ядро остановилось… Или всё это ложь?
#космос #астрономия #физика #механика #physics #science #наука #космология
💡 Physics.Math.Code // @physics_lib
Кора, на которой мы существуем, довольно тонкая, десятки километров. В центре планеты – относительно небольшое железное ядро. Именно оно создает магнитное поле Земли. А магнитное поле защищает нас от космической радиации. Посмотрите на другие планеты, да хотя бы на Марс, где магнитного поля практически нет. Лучше всю жизнь прожить в Чернобыле, чем минуту на Марсе, радиация полощет непрерывным дождем. Защищают нас, конечно, и атмосфера, но в основном – магнитное поле.
Диаметр ядра около 7 тысяч километров. В самом центре ядра суперплотный железный шар диаметром 2400 км. Этот желвачок окружен, как капуста листьями, слоями, состоящими из опять же железа и некоторых других веществ.
И считалось, что внутреннее ядро Земли, то, которое бескомпромиссно железное, вращается чуть быстрее всего остального. И вот как это выглядит: в моменте ядро чуть забегает вперед от вращения всей планеты. А по итогам года накапливается разница побольше, и ядро опережает все остальные недра на одну десятую градуса.
Эту особенность ядра выяснили в 90-е годы, и думали, так всегда и бывает. Но – новые землетрясения, новые данные, и что-то сомнения стали закрадываться. Буквально в прошлом году появилась информация, что около 1970 года ядро едва двигалось, затем стало ускоряться, что и заметили в 1990-е. А потом? А что потом, как раз и раскрыли китайские ученые Йи Ян и Сяодун Сун. Согласно их новейшим данным, железное внутреннее ядро, то самое, которое, как перила эскалатора, заметно опережало вращение планеты в целом, остановилось. И вот-вот примется вращаться в обратную сторону. А не разнесет ли оно всю нашу бедную планету? Откуда берется магнитное поле? Его создает то самое железное ядро. Как именно, ученые спорят, но сам факт неоспорим.
Но теперь мы видим, что с этим ядром что-то не то. И спрашиваем: а не исчезает ли и магнитное поле? Если оно создается, например, вращением ядра, а ядро остановилось… Или всё это ложь?
#космос #астрономия #физика #механика #physics #science #наука #космология
💡 Physics.Math.Code // @physics_lib
👍73😱41🤔24🙈15❤7🔥6❤🔥4💊4⚡1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
💫 Solar Analemma ☀️
Аналемма (др.-греч. ανάλημμα, «основа, фундамент») — кривая, соединяющая ряд последовательных положений центральной звезды планетной системы (в нашем случае — Солнца) на небосводе одной из планет этой системы в одно и то же время суток в течение года.
Форма аналеммы на небосводе Земли имеет вид «восьмёрки» и определяется наклоном земной оси к плоскости эклиптики, эллиптичностью земной орбиты и ориентацией земной оси относительно главных осей эллипса земной орбиты. Наивысшее положение солнца на аналемме (точнее — имеющее наибольшее склонение) соответствует летнему солнцестоянию, наинизшее (с наименьшим склонением) — зимнему. Положение в перекрестии «восьмёрки» солнце занимает два раза в год, в середине апреля и в конце августа. Эти даты не совпадают с весенним и осенним равноденствием, а сдвинуты к лету (в южном полушарии к зиме), что связано с эллиптичностью земной орбиты.
Вследствие эллиптичности земной орбиты положения солнца вблизи верхнего экстремума расположены теснее, а вблизи нижнего — реже. Это связано с тем, что вблизи зимнего солнцестояния Земля движется по орбите быстрее, так как она проходит перигелий в начале января, а вблизи летнего — медленнее (афелий в начале июля). Поскольку солнцестояния опережают дни прохождений перигелия и афелия примерно на две недели, «восьмёрка» аналеммы слегка асимметрична — восточная и западная половины несколько различаются. #gif #физика #механика #астрономия #космос #космология #кинематика #physics
💡 Physics.Math.Code // @physics_lib
Аналемма (др.-греч. ανάλημμα, «основа, фундамент») — кривая, соединяющая ряд последовательных положений центральной звезды планетной системы (в нашем случае — Солнца) на небосводе одной из планет этой системы в одно и то же время суток в течение года.
Форма аналеммы на небосводе Земли имеет вид «восьмёрки» и определяется наклоном земной оси к плоскости эклиптики, эллиптичностью земной орбиты и ориентацией земной оси относительно главных осей эллипса земной орбиты. Наивысшее положение солнца на аналемме (точнее — имеющее наибольшее склонение) соответствует летнему солнцестоянию, наинизшее (с наименьшим склонением) — зимнему. Положение в перекрестии «восьмёрки» солнце занимает два раза в год, в середине апреля и в конце августа. Эти даты не совпадают с весенним и осенним равноденствием, а сдвинуты к лету (в южном полушарии к зиме), что связано с эллиптичностью земной орбиты.
Вследствие эллиптичности земной орбиты положения солнца вблизи верхнего экстремума расположены теснее, а вблизи нижнего — реже. Это связано с тем, что вблизи зимнего солнцестояния Земля движется по орбите быстрее, так как она проходит перигелий в начале января, а вблизи летнего — медленнее (афелий в начале июля). Поскольку солнцестояния опережают дни прохождений перигелия и афелия примерно на две недели, «восьмёрка» аналеммы слегка асимметрична — восточная и западная половины несколько различаются. #gif #физика #механика #астрономия #космос #космология #кинематика #physics
💡 Physics.Math.Code // @physics_lib
👍128🔥32❤13🤩7❤🔥3🙈2
This media is not supported in your browser
VIEW IN TELEGRAM
🪐 Новая идея терраформирования Марса — возможно ли это?
Терраформирование Марса — гипотетический процесс, в ходе которого марсианский климат, поверхность и другие характеристики планеты должны быть последовательно изменены с целью сделать большие пространства на поверхности Марса более пригодными для человеческой жизни, таким образом облегчая колонизацию планеты, а также делая эту колонизацию гораздо более безопасной и устойчивой.
Концепция базируется на предположении, что среда планеты может быть терраформирована с использованием искусственных средств. Кроме того, осуществимость такого создания планетарной биосферы на Марсе ещё не доказана. Было предложено несколько методов, реализация отдельных из которых требует невероятных ресурсных и денежных затрат, а также несколько других, которые сейчас являются технологически достижимыми.
Будущий прирост населения и потребности в ресурсах могут обусловить необходимость колонизации объектов, отличных от Земли, таких как Марс, Луна и ближайшие планеты. Колонизация космоса облегчит человечеству сбор энергетических и материальных ресурсов, имеющихся в Солнечной системе.
Со многих точек зрения Марс наиболее похож на Землю из всех планет, входящих в Солнечную систему. Считается, что Марс когда-то, на ранних этапах своей истории, действительно имел среду ещё более похожую на современную Землю, имел густую атмосферу и много воды, которую потерял за период в несколько сотен миллионов лет. Из-за сходства и близости «Красной планеты» к Земле, Марс может оказаться наиболее целесообразным и эффективным объектом для терраформирования среди всех космических тел в Солнечной системе.
К этической проблематике принадлежит опасность потенциального вытеснения местных марсианских форм жизни земными, если такие формы жизни, хотя бы и микробные, действительно существуют. #gif #физика #механика #астрономия #космос #космология #кинематика #physics
💡 Physics.Math.Code // @physics_lib
Терраформирование Марса — гипотетический процесс, в ходе которого марсианский климат, поверхность и другие характеристики планеты должны быть последовательно изменены с целью сделать большие пространства на поверхности Марса более пригодными для человеческой жизни, таким образом облегчая колонизацию планеты, а также делая эту колонизацию гораздо более безопасной и устойчивой.
Концепция базируется на предположении, что среда планеты может быть терраформирована с использованием искусственных средств. Кроме того, осуществимость такого создания планетарной биосферы на Марсе ещё не доказана. Было предложено несколько методов, реализация отдельных из которых требует невероятных ресурсных и денежных затрат, а также несколько других, которые сейчас являются технологически достижимыми.
Будущий прирост населения и потребности в ресурсах могут обусловить необходимость колонизации объектов, отличных от Земли, таких как Марс, Луна и ближайшие планеты. Колонизация космоса облегчит человечеству сбор энергетических и материальных ресурсов, имеющихся в Солнечной системе.
Со многих точек зрения Марс наиболее похож на Землю из всех планет, входящих в Солнечную систему. Считается, что Марс когда-то, на ранних этапах своей истории, действительно имел среду ещё более похожую на современную Землю, имел густую атмосферу и много воды, которую потерял за период в несколько сотен миллионов лет. Из-за сходства и близости «Красной планеты» к Земле, Марс может оказаться наиболее целесообразным и эффективным объектом для терраформирования среди всех космических тел в Солнечной системе.
К этической проблематике принадлежит опасность потенциального вытеснения местных марсианских форм жизни земными, если такие формы жизни, хотя бы и микробные, действительно существуют. #gif #физика #механика #астрономия #космос #космология #кинематика #physics
💡 Physics.Math.Code // @physics_lib
👍68🔥14🤯8💊8🤔6🙈4❤3🆒2
Media is too big
VIEW IN TELEGRAM
После открытия Нептуна в 1846 году бытовало мнение, что за его орбитой может существовать ещё одна планета. В середине XIX века начались её поиски. В начале XX века за поиски «планеты X» взялся Персиваль Лоуэлл. Гипотезой о планете X он объяснял различия между рассчитанными и фактическими орбитами газовых гигантов, в частности, Урана и Нептуна, считая, что эти отклонения вызываются гравитацией большой невидимой девятой планеты.
Казалось, что открытие Плутона, совершённое астрономом Клайдом Томбо в 1930 году, подтверждает гипотезу Лоуэлла: до 2006 года Плутон официально считался девятой планетой. В 1978 году, после открытия Харона, выяснилось, что масса Плутона слишком мала, чтобы его гравитация влияла на газовые гиганты. Это обусловило кратковременный интерес к «десятой планете». В начале 1990-х годов её поиски почти прекратились, поскольку в результате исследования данных, поступивших от космического зонда «Вояджер-2», оказалось, что отклонения орбиты Урана объясняются недооценкой массы Нептуна. После 1992 года, в результате открытия многочисленных транснептуновых объектов, встал вопрос, следует ли и дальше считать Плутон планетой, или, возможно, его и его «соседей» следует отнести к новому особому классу объектов, как это было сделано в случае с астероидами. Хотя некоторые большие члены этой группы сначала считались планетами, в 2006 году Международный астрономический союз переквалифицировал Плутон и его крупнейших соседей в карликовые планеты, вследствие чего в Солнечной системе осталось лишь восемь планет... #планеты #физика #механика #астрономия #космос #космология #кинематика #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤61👍49🔥11🙈3❤🔥2🤔2👾2⚡1🤯1