Forwarded from Machinelearning
Sana - семейство моделей для генерации изображений с разрешением до 4096x4096 пикселей. Главное преимущество Sana - высокая скорость инференса и низкие требования к ресурсам, модели можно запустить даже на ноутбуке.
Секрет эффективности Sana в ее архитектуре, которая состоит из нескольких инновационных компонентов:
Сжимает изображение в 32 раза, в результате чего значительно сокращается число латентных токенов, что, в свою очередь, повышает эффективность обучения и позволяет генерировать изображения с разрешением 4K.
Использует линейное внимание вместо традиционного, ускоряя генерацию с разрешением 4K в 1.7 раза.
В Linear DiT вместо модуля MLP-FFN используется Mix-FFN, который объединяет в себе свертку 3x3 и Gated Linear Unit (GLU). Mix-FFN позволяет отказаться от позиционного кодирования без потери качества.
Энкодер, основанный на LLM Gemma, который лучше понимает текстовые запросы пользователя и точнее передает их смысл на генерации.
Для точного соответствия "текст - изображение" при обучении энкодера применялись "сложные человеческие инструкции" (CHI), которые научили Gemma учитывать контекст запроса.
Sana создавалась с помощью уникальной стратегии обучения и выборки. В процессе обучения используются несколько VLM (VILA, InternVL2) для создания различных аннотаций к каждому изображению. Затем, на основе CLIP-оценки, были отобраны наиболее подходящие пары "текст-изображение".
Обучение происходило постепенно, начиная с разрешения 512x512 и заканчивая 4096x4096, а алгоритм Flow-DPM-Solver ускорил процесс выборки, сократив количество шагов по сравнению с Flow-Euler-Solver.
Результаты тестирования Sana впечатляют:
⚠️ Для локального инференса модели 0.6B требуется 9GB VRAM, а для модели 1.6B - 12GB VRAM.
# official online demo
DEMO_PORT=15432 \
python app/app_sana.py \
--config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth
@ai_machinelearning_big_data
#AI #ML #Diffusion #SANA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👍7❤4
Forwarded from Искусственный интеллект. Высокие технологии
Обычно в генерации видео модели обрабатывают весь ролик "размазанным" шумом — как бы в целом.
А тут модель управляет шумом отдельно для каждого кадра, и делает это с помощью векторизованных "timesteps" (временных шагов) — более гибко, точно и эффективно.
Новая модель генерации видео на базе Mochi1-Preview и поддерживает:
🔹 Text-to-Video
🔹 Image-to-Video
🔹 Frame Interpolation
🔹 Video Transitions
🔹 Looping, удлинение видео и многое другое
⚡ Эффективность:
▪ 16× H800 GPU
▪ 0.1k GPU-часов
▪ Обучение: 500 итераций, batch size 32
▪ По заявления разработчиков - стоимость обучения всего 100$ 🤯
▪Github
▪Paper
▪Dataset
▪Model
#diffusion #videogen #pusa #opensource #AI #text2video #mochi1 #fvdm
@vistehno
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤2🥰2