Forwarded from Machinelearning
Пока одни восхищаются способностью ИИ писать код по текстовому описанию, в компании Марка Цукерберга решили устроить ему настоящее испытание на профессионализм и создали «The Automated LLM Speedrunning Benchmark» — полигон, где нейросетям предлагается не просто написать что-то с нуля, а воспроизвести и улучшить уже существующий код.
В качестве задачи был взят реальный проект NanoGPT, где сообщество энтузиастов соревнуется в максимальном ускорении обучения GPT-2, небольшой языковой модели. Цель - не просто скопировать, а понять и применить конкретную оптимизацию, которую до этого внедрил человек.
ИИ-агенту дают исходный скрипт предыдущего рекордсмена и подсказку одного из 3 уровней: от псевдокода с описанием изменений до полноценной мини-статьи, объясняющей суть улучшения. Агент, получив эти данные, должен внести правки в код так, чтобы приблизиться к скорости обучения следующего рекордсмена.
Эффективность мерили метрикой FSR (Fraction of Speedup Recovered), это доля восстановленного ускорения. Если человек ускорил процесс на 10 минут, а ИИ смог добиться ускорения в 5 минут, его результат — 50% FSR. Такая система позволяет оценить не абстрактные способности модели, а ее умение работать с конкретными, практическими задачами по оптимизации.
Итоги оказались, мягко говоря, отрезвляющими. Даже топовые модели (Claude 3.7 Sonnet и Gemini 2.5 Pro), показали очень скромные результаты.
С лучшими подсказками (псевдокод и детальное описание) самые успешные агенты с трудом смогли воспроизвести хотя бы 40% от прироста производительности, достигнутого человеком. Без подсказок их производительность была и вовсе близка к нулю.
Разбор полетов бенчмарка показал, что ИИ-агенты часто генерируют либо просто неработающий код с ошибками времени выполнения, либо код, который компилируется, но не дает никакого прироста скорости, а иногда даже замедляет процесс.
Авторы не просто опубликовали статью, а выложили весь фреймворк в открытый доступ, так что любой желающий может самостоятельно погонять практически любые модели.
В основе фреймворка лежит гибкий агентский каркас, который имитирует рабочий процесс исследователя: генерация идеи, реализация в коде, запуск эксперимента и анализ результатов.
Каждая итерация ИИ-агента аккуратно сохраняется в отдельную версию, создавая полную историю всех правок, от удачных до провальных.
Установка максимально проста, а для тех, кто хочет воспроизвести эксперименты из статьи, авторы приложили готовые скрипты. Также можно легко добавить и протестировать другие модели, просто создав для них конфиг или дать ИИ другую задачу, не связанную с NanoGPT - определять кастомные таски тоже можно.
@ai_machinelearning_big_data
#AI #ML #LLM #Benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥2
Forwarded from Machinelearning
Исследователи из из Гонконгского университета и инженеры Alibaba научили LLM генерировать семантически разные ответы, заставляя их «думать» в ортогональных направлениях.
Наверняка каждый, кто работает с LLM, сталкивался с их любовью к самоповторам. Запрашиваешь несколько вариантов решения, а получаешь одну и ту же мысль, просто перефразированную.
Стандартные подходы к декодированию,
temperature sampling
или diverse beam search
, создают лишь лексическое разнообразие, но пасуют, когда требуется семантическое. Это серьезная проблема для Best-of-N или RLHF. Ведь без по-настоящему разных идей и подходов к решению задачи эти методы теряют свою силу: выбирать лучший вариант не из чего, а обучать модель на однотипных примерах неэффективно.Решение предложили в методе SemDiD (Semantic-guided Diverse Decoding). Его суть, если кратко, перестать играть с токенами на поверхности и начать управлять генерацией напрямую в пространстве эмбеддингов.
Сначала, на старте, он принудительно направляет разные группы beams по ортогональным векторам в семантическом пространстве. Грубо говоря, это как дать команду разным поисковым группам двигаться строго на север, юг и запад, чтобы они гарантированно разошлись.
По мере генерации, когда жесткие директивы могут стать неоптимальными, включается второй механизм -
inter-group repulsion
. Он просто следит, чтобы смысловые траектории ответов не сближались, сохраняя их уникальность до самого конца.Но как, гоняясь за разнообразием, не получить на выходе бессвязный бред?
SemDiD подходит к контролю качества уникально. Он не пытается слепо максимизировать вероятность последовательности, а использует ее лишь как нижнюю границу, чтобы отсечь совсем уж плохие варианты.
Кроме того, алгоритм корректирует системные искажения, когда вероятность токенов искусственно завышается в зависимости от их позиции в тексте.
Для баланса между качеством и разнообразием используется адаптивный механизм на основе гармонического среднего, который в каждый момент времени уделяет больше внимания той метрике, которая проседает.
На бенчмарках для Best-of-N, от MMLU-Pro+ до GSM8K, SemDiD увеличивает покрытие (шанс найти верный ответ) на 1.4%-5.2% по сравнению с аналогами.
Генерируя для GRPO или RLOO семантически богатые наборы ответов, SemDiD предоставляет им более качественный материал для обучения. Это ускоряет сходимость на 15% и повышает финальную точность моделей.
@ai_machinelearning_big_data
#AI #ML #LLM #SemDiD
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥10❤5👍5
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Ведущие ИИ-компании в партнерстве с Американской федерацией учителей создают Национальную академию по обучению искусственному интеллекту. В рамках инициативы стоимостью 22.5 миллиона долларов преподавателям от детского сада до старших классов предоставят бесплатные программы для интеграции ИИ в учебный процесс.
Проект стал ответом на стихийное распространение чат-ботов в школах, которое вызвало у педагогов опасения по поводу списывания и снижения качества обучения. Вместо запретов, технологические гиганты предлагают обучать учителей ответственному использованию новых инструментов, попутно формируя лояльность к своим продуктам у будущих пользователей.
wired.com
All-TNN - нейросеть, структура которой имитирует организацию нейронов в человеческом мозге. В отличие от традиционных CNN, которые отлично распознают текстуры, но плохо справляются с формами, All-TNN демонстрирует смещения, характерные для людей. Например, она «ожидает» увидеть самолет в верхней части изображения, а не в нижней.
Ключевое отличие - отказ от weight sharing, неестественного для биологических систем. Вместо этого каждый нейрон обучается индивидуально, но со сглаживающим ограничением, которое заставляет соседние нейроны учиться схожим признакам.
Несмотря на то, что All-TNN пока уступает CNN в точности классификации, она потребляет в 10 раз меньше энергии при 13х большем размере.
spectrum.ieee.org
По соглашению, Replit станет доступен в магазине Azure и будет интегрирован с облачными сервисами Microsoft, включая контейнеры, виртуальные машины и базу данных Neon Serverless Postgres. Компании позиционируют совместное предложение как инструмент для быстрого прототипирования, ориентированный не только на программистов, но и на бизнес-пользователей без опыта в кодинге.
Это событие примечательно, поскольку Replit традиционно считалась одним из ключевых клиентов и партнеров Google Cloud, где размещались созданные на платформе приложения. Replit подтвердил, что компания не уходит от Google, а расширяет поддержку на экосистему Microsoft, становясь мультиоблачным решением. Для Microsoft это партнерство - способ привлечь на свою платформу разработчиков и проекты, ранее ориентированные на конкурента.
prnewswire.com
Moonvalley, основанная выходцами из DeepMind, открыла публичный доступ к своей модели для генерации видео Marey, которая была обучена исключительно на открыто лицензированных данных. Решение позиционируется как инструмент для «гибридного кинопроизводства», предлагая кинопродакшену значительно больше контроля, чем стандартные text-to-video модели.
Модель отличается «осведомленностью о 3D-пространстве» и возможностью свободного управления виртуальной камерой. Пользователи могут в реальном времени изменять траекторию, панорамировать и масштабировать изображение простым движением мыши. Marey также позволяет контролировать объекты, персонажей и менять фон в исходном видео.
Доступ к Marey, способной генерировать ролики до 5 секунд, предоставляется по платной подписке - $14,99 за 100 кредитов, $34,99 за 250 кредитов и $149,99 за 1000 кредитов.
techcrunch.com
Техгигант приобрел миноритарную долю в EssilorLuxottica, крупнейшем в мире производителе очков и владельце бренда Ray-Ban. Сумма сделки составила 3,5 млрд. долларов за пакет акций размером менее 3%. Сделка значительно углубляет партнерство двух компаний, которые уже совместно выпускают умные очки Ray-Ban.
Для Марка Цукерберга это стратегический шаг в рамках его масштабного плана по развитию ИИ и созданию собственных аппаратных платформ. Умные очки рассматриваются как ключевое устройство будущего, которое избавит от привязки к смартфонам конкурентов, Apple и Google.
bloomberg.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥5❤4👍2
Forwarded from Machinelearning
Размер — 1 триллион параметров, при этом:
- 65.8% на SWE-bench Verified, против 50.2% у Claude Sonnet 4 и 40.8% у GPT-4.1
- Лучшие результаты среди открытых моделей по кодингу, математике и агентным задачам
- Архитектура MoE на базе DeepSeek V3, 1 трлн параметров, 32B активны.
Также доступна через API:
- $0.15 за миллион входных токенов (при попадании в кэш)
- $0.60 за миллион входных токенов (если кэш не сработал)
- $2.50 за миллион выходных токенов
Почти в 5 раз дешевле, чем Claude 4 Sonnet и Gemini 2.5 Pro!
@ai_machinelearning_big_data
#kimi #china #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8❤5👍4
Forwarded from Machinelearning
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
🧠 Во-первых, это *не* reasoning-модель. Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По большинству бенчмарков работает лучше Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI: там, где другие модели пасуют, Qwen3 выдаёт серьёзный прогресс.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM. Следим.
🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
@ai_machinelearning_big_data
#qwen #ml #ai
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
🧠 Во-первых, это *не* reasoning-модель. Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По большинству бенчмарков работает лучше Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI: там, где другие модели пасуют, Qwen3 выдаёт серьёзный прогресс.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM. Следим.
@ai_machinelearning_big_data
#qwen #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7❤6👍2👌1
Forwarded from Анализ данных (Data analysis)
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
Попробовать бесплатно можно:
🟡 Через чат: ttps://chat.qwen.ai/)
🟡 GitHub link: https://github.com/QwenLM/qwen-code
🟡 Blog:https://qwenlm.github.io/blog/qwen3-coder/
🟡 Model: https://hf.co/Qwen/Qwen3-Coder-480B-A35B-Instruct
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
Попробовать бесплатно можно:
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥4❤1
Forwarded from Machinelearning
ASI-ARCH - экспериментальная демонстрация искусственного сверхинтеллекта для исследований в области ИИ, который способен полностью автономно вести научную работу по поиску новых нейросетевых архитектур.
Система самостоятельно выдвигает гипотезы, реализует их в виде исполняемого кода, обучает и проверяет на практике. Результатом этой работы стали 1773 автономных эксперимента, которые заняли свыше 20 000 GPU-часов и привели к открытию 106 новых SOTA-архитектур с линейным механизмом внимания.
На первом этапе, система работает с небольшими моделями размером около 20 млн параметров, обучая их на 1 млрд токенов. На этом этапе было проведено 1773 эксперимента, которые заняли примерно 10 000 GPU-часов.
Всего на этом этапе было отобрано 1350 перспективных кандидатов — все они превзошли базовую архитектуру DeltaNet как по лоссу, так и по метрикам на бенчмарках.
Второй этап - верификация. Кандидаты первого этапа были масштабированы до 340 млн параметров, чтобы соответствовать конфигурации DeltaNet. После фильтрации архитектур с избыточной сложностью или числом параметров осталось около 400 моделей.
Их обучение на 1 млрд. токенов потребовало ещё 10 000 GPU-часов. В итоге, именно из этой группы были выделены 106 архитектур, достигших SOTA-уровня.
Для финальной валидации исследователи отобрали 5 лучших моделей, обучили их на 15 млрд. токенов и сравнили с Mamba2, Gated DeltaNet и DeltaNet.
ASI-ARCH явно предпочитает работать с проверенными временем компонентами: гейтингом и свёрткой. Но самое главное - распределение компонентов в 106 лучших моделях имеет значительно менее выраженный long-tail distribution по сравнению с остальными 1667 сгенерированными архитектурами.
Это означает, что система добивается успеха не путем хаотичного перебора экзотических идей, а через итеративное улучшение набора проверенных техник. По сути, это очень напоминает методологию работы ученых-людей.
Одна из лучших найденных ИИ-архитектур, PathGateFusionNet, показала средний результат по всем бенчмаркам 48.51. Для сравнения, Mamba2 набрала 47.84, а разработанная человеком Gated DeltaNet — 47.32. Другая генерация, ContentSharpRouter, достигла показателя 48.34.
Если посмотреть на отдельные тесты, то PathGateFusionNet получила на BoolQ 60.58 балла, а Gated DeltaNet - 60.12. AdaptiveEntropyRouter в версии на 340 млн. параметров показала результат на тестах 44.31, что на 2.21 пункта выше, чем у Gated DeltaNet (42.10).
И так практически во всем, улучшения наблюдаются по всему спектру задач.
Для всех 1773 сгенерированных архитектур распределение источников было таким:
Но если посмотреть только на 106 SOTA-итогов, картина меняется. Доля идей, основанных на Analysis, возрастает с 38.2% до 44.8%, а доля Cognition немного снижается до 48.6%.
Таким образом, чтобы достичь ощутимых результатов, ИИ недостаточно просто копировать и комбинировать человеческие наработки. Он должен анализировать собственный опыт, учиться на своих же удачах и провалах, синтезируя более совершенные решения.
@ai_machinelearning_big_data
#AI #ML #Research #ASIARCH
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤3🔥2😁2
Forwarded from Machinelearning
Попросите любую LLM написать CUDA-код, и скорее всего, вы получите что-то, что либо не компилируется, либо работает мучительно медленно. Причина проста: качественного CUDA-кода в обучающих данных моделей почти не было.
Чтобы исправить это досадное упущение, Deep Reinforce AI создали систему CUDA-L1, которая основана на трехэтапном пайплайне: сначала supervised-обучение для освоения основ, затем self-supervised для практики и, наконец, контрастное обучение с подкреплением, чтобы было все максимально быстро.
Для этого существующий код был аугментирован - создавались его вариации, чтобы повысить насмотренность модели.
Обучаемой модели показывали несколько реализаций CUDA-ядер вместе с их показателями ускорения, например: «kernel_v1 дает ускорение 1.2x», «kernel_v2 — 2.8x», а «kernel_v3 — 1.5x». Затем задали 3 вопроса:
Таким образом, модель не гадает вслепую, а учится на конкретных примерах, анализируя причины разницы в производительности.
После обучения выяснилось, что более 30% сгенерированных реализаций пытались сжульничать - создавали дополнительные CUDA-потоки, которые выполнялись асинхронно.
Поскольку бенчмарк KernelBench отслеживал время только на основном потоке, код выглядел быстрее, чем был на самом деле, показывая фиктивное ускорение в 18 раз.
Другие уловки состояли в манипуляции гиперпараметрами задачи (уменьшение batch_size или размерностей) и кеширование результатов вычислений.
Во-первых, в качестве "адвоката дьявола" взяли adversarial-чекер на базе DeepSeek-R1, который анализировал код на предмет эксплойтов с точностью обнаружения более 60%.
Во-вторых, собрали базу данных из более чем 500 уникальных паттернов взлома, это повысило точность обнаружения на 25%.
И в-третьих, применили математическое сглаживание и нормализацию наград, где любое подозрительное ускорение (от 1.5x для простых операций) дополнительно проверялось.
Система успешно сгенерировала рабочий код для 249 из 250 задач, причем в 240 случаях код оказался быстрее базовой реализации.
Среднее ускорение по всем задачам составило 3.12 раза, максимальное - аж 120 раз. Медианное ускорение (50-й перцентиль) составило 1.42x, а 75-й перцентиль — 2.25x.
Производительность по уровням сложности задач распределилась следующим образом: на простых операциях среднее ускорение составило 2.78x, на последовательностях операторов - 3.55x, а на сложных задачах вроде полных слоев трансформера - 2.96x.
Код, оптимизированный на NVIDIA A100, был протестирован на других GPU. Результаты показали, что найденные паттерны оптимизации фундаментальны и работают на разных архитектурах.
Среднее ускорение на H100 составило 2.39x (успешных ускорений 227 из 250), на L40 — 3.12x (228/248), а на потребительской RTX 3090 — 2.50x (213/242).
@ai_machinelearning_big_data
#AI #ML #CUDA #DeepReinforce #ContrastiveRL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥8❤6
Forwarded from Machinelearning
Unsloth конвертировали обе GPT-OSS (20B и 120B) и исправили ошибки, чтобы повысить качество инференса.
Минимальных требований для запуска моделей нет, запуститься можно даже если у вас всего 6 ГБ и только CPU, но инференс будет медленнее.
GPU не требуется , особенно для модели 20B, но его наличие значительно увеличивает скорость вывода (~80 токенов/с). С чем-то вроде H100 можно получить пропускную способность 140 токенов/с, и это значительно быстрее, чем у OpenAI в ChatGPT.
Модели можно запустить через llama.cpp, LM Studio или Open WebUI. Если модель 120B слишком медленная, попробуйте версию 20B - она очень быстрая и работает не хуже o3-mini.
Помимо моделей формата GGUF c полной точностью, Unsloth сделали версии с 4-bit и 16-bit точностью. 4-бинтый квант, кстати, можно файнтюнить на 24 ГБ VRAM.
@ai_machinelearning_big_data
#AI #ML #GPTOSS #GGUF #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9❤4👍2
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
- SimpleQA: 91% точности, чуть выше Perplexity Pro — и всё это полностью локально.
- Сценарии: быстрый веб-поиск и глубокое исследование (Deep Research).
Из чего сделана
- Базируется на Qwen3-4B-Thinking (контекст до 256k), дообучена в Jan на рассуждение и работу с инструментами.
Где запускать
- Jan, llama.cpp или vLLM.
Как включить поиск в Jan
- Settings → Experimental Features → On
- Settings → MCP Servers → включите поисковый MCP (например, Serper)
Модели
- Jan-v1-4B: https://huggingface.co/janhq/Jan-v1-4B
- Jan-v1-4B-GGUF: https://huggingface.co/janhq/Jan-v1-4B-GGUF
@ai_machinelearning_big_data
#ai #ml #local #Qwen #Jan
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤5🔥2
Forwarded from Machinelearning
Что она умеет:
-
- Автоматическая пунктуация, капитализация и точные таймстампы до слова.
- Поддержка русского, французского, немецкого, испанского и многих других языков.
Чем интересна
- До 10× быстрее инференс, чем у моделей в 3 раза больше.
- Уже показывает state-of-the-art точность среди открытых моделей на Hugging Face.
- Лицензия CC-BY-4.0 — можно свободно использовать в проектах.
Под капотом:
- Архитектура: FastConformer-энкодер + Transformer-декодер (~978M параметров).
- Форматы:
.wav
и .flac
, моно 16 кГц. - Легко интегрируется через NVIDIA NeMo или прямо с Hugging Face.
Где пригодится:
Всего ~978M параметров → легче, быстрее и дешевле в использовании, чем большие модели конкурентов.
@ai_machinelearning_big_data
#AI #NVIDIA #SpeechRecognition #ASR #AST #Multilingual #MachineLearning #DeepLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍4🔥4
Forwarded from Python/ django
DeepCode превращает научные статьи и технические документы в готовые проекты, включая фронтенд, бэкенд и полноценные репозитории.
🔹 Основные возможности:
• Paper2Code — реализация идей из исследований в рабочий код
• Text2Web — генерация интерфейсов по описанию
• Text2Backend — автоматическое создание масштабируемых серверов
• Поддержка длинных документов и многофайловых проектов
🔜 В ближайшее время разработчики обещают:
• Автоматическую проверку и валидацию кода
• Повышение скорости генерации
• Улучшенную работу с требованиями
• Бенчмарки воспроизведения научных статей (PaperBench)
Проект полностью open source: https://github.com/HKUDS/DeepCode
@pythonl
#deepcode #AI #coding
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍4🔥2
Forwarded from Machinelearning
🐋 Гигантский кит приплыл к нам!
🚀 DeepSeek обновился до V3.1.
Следите за новостями, волна только набирает силу.
✨ Новый LLM: deepseek-ai/DeepSeek-V3.1-Base
⚡ 685B параметров
📏 Контекстное окно 128k
https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Base
@ai_machinelearning_big_data
#DeepSeek #AI #LLM #V3_1 #MachineLearning
🚀 DeepSeek обновился до V3.1.
Следите за новостями, волна только набирает силу.
✨ Новый LLM: deepseek-ai/DeepSeek-V3.1-Base
⚡ 685B параметров
📏 Контекстное окно 128k
https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Base
@ai_machinelearning_big_data
#DeepSeek #AI #LLM #V3_1 #MachineLearning
👍6🔥6❤3