Data Science by ODS.ai 🦜
46K subscribers
666 photos
77 videos
7 files
1.75K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
加入频道
Interview of Ilya Sutskver

TLDR: thereotically #chatgpt can learn a lot and eventually converge to #AGI given the proper dataset and help of #RLHF (Reinforcement Learning from Human Feedback).

Video provides valuable insights into the current state and future of artificial intelligence. The conversation explores the progress of AI, its limitations, and the importance of reinforcement learning and ethics in AI development. Ilia also discusses the potential benefits of AI in democracy and its potential role in helping humans manage society. This interview offers a comprehensive and thought-provoking overview of the AI landscape, making it a must-watch for anyone interested in understanding the impact of AI on our lives and the world at large.

Youtube: https://www.youtube.com/watch?v=SjhIlw3Iffs

#youtube #Sutskever #OpenAI #GPTEditor
👍15🔥7👎1
Forwarded from Machinelearning
✔️ Бесплатные полезные руководства по дистилляции моделей:

1. Руководство по дистилляции от OpenAI 🖥

Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.

Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.

- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.

- Создание обучающих данных для компактной модели:
Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.

- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.

🔗Ссылка

2. Учебник по дистилляции знаний от PyTorch 🔥

Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.

Основные аспекты руководства:

- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.

- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.

- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.

Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.

Ссылка

3. Jetson Introduction to Knowledge Distillation от Nvidia 🖥

В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.

Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.

Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.

🔗 Ссылка

4. Учебник по дистилляции знаний от Keras ⭐️

Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.

🔗Github
🔗Учебник Keras

5. Руководство по дистилляции от
huggingface
🤗

Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.

🔗 Ссылка

6. Дистилляция знаний для задач компьютерного зрения от huggingface 👁

Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.

🔗Ссылка

#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥731👍1
Forwarded from Machinelearning
OpenAI представляет Codex — облачного агента для генерации кода, способного выполнять множество задач параллельно.

В основе — модель codex-1.


🧠 Ключевые особенности:

• Codex работает прямо в браузере
• Поддерживает многозадачность: можно одновременно проверять код, задавать вопросы и переключаться между задачами
• Построен на **новой модели Codex-1** — самой мощной модели для кодинга от OpenAI
• Интеграция с GitHub — можно подключить свой аккаунт, и агент будет работать с вашими репозиториями

🚀 Codex — это шаг в сторону полуавтоматизированной разработки, где ИИ способен выполнять рутинную и аналитическую работу без постоянного контроля со стороны разработчика.

📅 Запуск ожидается уже сегодня.

https://openai.com/index/introducing-codex/


@ai_machinelearning_big_data

#OpenAI #Codex #AI #CodeAutomation #DevTools
6👍6🔥3
🚨 ANTHROPIC ОТКЛЮЧИЛА OPENAI ОТ ДОСТУПА К CLAUDE

> Anthropic отозвала доступ OpenAI к API своих моделей Claude
> Заявление: “Технические сотрудники OpenAI использовали наши инструменты для программирования перед запуском GPT-5”
> “К сожалению, это прямое нарушение условий использования”

🔥 Кажется, война ИИ-компаний вышла на новый уровень.

@data_analysis_ml

#GPT5 #openai #ANTHROPIC
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥11😱5😁43👍3
Forwarded from Machinelearning
🔥 GPT-OSS — открытые модели для продвинутого reasoning и агентных задач от OpenAI

🧠 Представлено два варианта:
GPT-OSS-120B — 117B параметров, запускается на одной H100 (80GB)
GPT-OSS-20B — 21B параметров, работает на 16GB GPU

💡 Оба варианта — MoE-модели (Mixture of Experts) с 4-битной квантизацией (MXFP4)

✔️ Особенности:
• Архитектура Token-choice MoE с SwiGLU
• Контекст до 128K токенов с RoPE
• Модель заточена на CoT (chain-of-thought)
• Поддержка instruction-following и tool-use
• Совместима с transformers, vLLM, llama.cpp, ollama
• Используется тот же токенизатор, что и в GPT-4o

Младшая модель может запускаться даже на локальном железе!

🏴‍☠️Лицензирование: Apache 2.0

https://github.com/huggingface/transformers/releases/tag/v4.55.0

🚀 Попробовать можно тут: https://www.gpt-oss.com/

💥 Официальный релиз: http://openai.com/open-models

@ai_machinelearning_big_data


#openai #opensource #chatgpt
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥94👍3