«Почвенные» биотопливные элементы вышли на полевые испытания
Использование микроорганизмов для генерации электрической энергии – идея не новая, первые подобные работы появились более 40 лет назад. Однако большинство исследований так и не вышло за пределы лабораторий. В новом выпуске журнала Applied Energy рассказывается о «полевых» испытаниях особого типа подобных топливных элементов – грунтовых микробных ТЭ (soil microbial fuel cells, SMFCs). Функциональные стеки SMFC приспособили для очистки питьевой воды.
Исследователи из Великобритании и Бразилии запустили опытную площадку на северо-востоке Бразилии. Почва в таких элементах действует как электродный сепаратор и служит источником как электроактивных бактерий, так и органических веществ. Каждый SMFC генерирует мощность 0,4 мВт, которая увеличивается до 12,2 МВт за счет электрического подключения 16 SMFC параллельно, со стабильной производительностью в течение 140 дней работы. В начальной школе в Икапуи, на северо-востоке Бразилии, была установлена масштабная система, состоящая из стека из 64 SMFC, которая продемонстрировала способность очищать до пяти литров воды в день при интеграции с электрохимическим реактором.
«Демонстрируя внедрение из лаборатории в поле, наша работа обеспечивает эффективный маршрут для масштабируемости и практического применения стеков SMFC для выработки энергии и самоочищения воды в отдаленных районах», - пишут авторы.
Источник: https://www.sciencedirect.com/science/article/abs/pii/S0306261920311776
#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
Использование микроорганизмов для генерации электрической энергии – идея не новая, первые подобные работы появились более 40 лет назад. Однако большинство исследований так и не вышло за пределы лабораторий. В новом выпуске журнала Applied Energy рассказывается о «полевых» испытаниях особого типа подобных топливных элементов – грунтовых микробных ТЭ (soil microbial fuel cells, SMFCs). Функциональные стеки SMFC приспособили для очистки питьевой воды.
Исследователи из Великобритании и Бразилии запустили опытную площадку на северо-востоке Бразилии. Почва в таких элементах действует как электродный сепаратор и служит источником как электроактивных бактерий, так и органических веществ. Каждый SMFC генерирует мощность 0,4 мВт, которая увеличивается до 12,2 МВт за счет электрического подключения 16 SMFC параллельно, со стабильной производительностью в течение 140 дней работы. В начальной школе в Икапуи, на северо-востоке Бразилии, была установлена масштабная система, состоящая из стека из 64 SMFC, которая продемонстрировала способность очищать до пяти литров воды в день при интеграции с электрохимическим реактором.
«Демонстрируя внедрение из лаборатории в поле, наша работа обеспечивает эффективный маршрут для масштабируемости и практического применения стеков SMFC для выработки энергии и самоочищения воды в отдаленных районах», - пишут авторы.
Источник: https://www.sciencedirect.com/science/article/abs/pii/S0306261920311776
#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
Открытый на Камчатке минерал станет перспективным материалом для натрий-ионных батарей
Научная группа под руководством профессора кафедры кристаллографии Санкт-Петербургского университета Станислава Филатова обнаружила на Камчатке новый минеральный вид — петровит. Находку ученые назвали в честь выдающегося кристаллографа, профессора СПбГУ Томаса Георгиевича Петрова, который совместно со своими учениками Аркадием Гликиным и Сергеем Мошкиным первым в мире создал технологию выращивания ювелирного малахита. Открытие опубликовано в журнале Mineralogical Magazine.
Недавняя находка ученых СПбГУ, петровит Na10CaCu2(SO4)8, образует голубые глобулярные корочки из таблитчатых кристаллов, содержащих газовые включения. «Атом меди в кристаллической структуре петровита имеет необычную и очень редкую координацию семью атомами кислорода. Такую координацию имеет только пара соединений, а также минерал саранчинаит, который был открыт нашими коллегами из СПбГУ — научной группой профессора Олега Сийдры», — отметил руководитель проекта профессор Станислав Филатов.
Минерал состоит из атомов кислорода, серы натрия и меди, которые образуют пористый каркас. Пустоты соединены между собой каналами, по которым могут перемещаться относительно мелкие атомы натрия. Таким образом, ученые установили, что структурный тип петровита является перспективным для ионной проводимости и может использоваться в качестве катодного материала для натрий-ионных батарей.
Источник: https://www.cambridge.org/core/journals/mineralogical-magazine/article/petrovite-na10cacu2so48-a-new-fumarolic-sulfate-from-the-great-tolbachik-fissure-eruption-kamchatka-peninsula-russia/08CD1AF71512AAF1146019481A3B42D1
#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
Научная группа под руководством профессора кафедры кристаллографии Санкт-Петербургского университета Станислава Филатова обнаружила на Камчатке новый минеральный вид — петровит. Находку ученые назвали в честь выдающегося кристаллографа, профессора СПбГУ Томаса Георгиевича Петрова, который совместно со своими учениками Аркадием Гликиным и Сергеем Мошкиным первым в мире создал технологию выращивания ювелирного малахита. Открытие опубликовано в журнале Mineralogical Magazine.
Недавняя находка ученых СПбГУ, петровит Na10CaCu2(SO4)8, образует голубые глобулярные корочки из таблитчатых кристаллов, содержащих газовые включения. «Атом меди в кристаллической структуре петровита имеет необычную и очень редкую координацию семью атомами кислорода. Такую координацию имеет только пара соединений, а также минерал саранчинаит, который был открыт нашими коллегами из СПбГУ — научной группой профессора Олега Сийдры», — отметил руководитель проекта профессор Станислав Филатов.
Минерал состоит из атомов кислорода, серы натрия и меди, которые образуют пористый каркас. Пустоты соединены между собой каналами, по которым могут перемещаться относительно мелкие атомы натрия. Таким образом, ученые установили, что структурный тип петровита является перспективным для ионной проводимости и может использоваться в качестве катодного материала для натрий-ионных батарей.
Источник: https://www.cambridge.org/core/journals/mineralogical-magazine/article/petrovite-na10cacu2so48-a-new-fumarolic-sulfate-from-the-great-tolbachik-fissure-eruption-kamchatka-peninsula-russia/08CD1AF71512AAF1146019481A3B42D1
#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
Перед вами в рубрике "Электромобиль по пятницам" уникальное транспортное средство: единственный в мире водородный троллейбус.
С марта этого года в Риге курсируют 10 таких троллейбусов, которые часть маршрута проходят с использованием контактной сети, а за ее пределы выходят на электроэнергии водородных топливных элементов.
Единственные в своем роде транспортные средства построены польской компанией Solaris.
#ипхф #наука #знания #историянауки #электрохимия #npenergy #нти #центрыкомпетенцийнти #интереснаянаука #ретрофото #ретро #электротранспорт #историятранспорта #электрокар #электроавтомобиль
С марта этого года в Риге курсируют 10 таких троллейбусов, которые часть маршрута проходят с использованием контактной сети, а за ее пределы выходят на электроэнергии водородных топливных элементов.
Единственные в своем роде транспортные средства построены польской компанией Solaris.
#ипхф #наука #знания #историянауки #электрохимия #npenergy #нти #центрыкомпетенцийнти #интереснаянаука #ретрофото #ретро #электротранспорт #историятранспорта #электрокар #электроавтомобиль
"Яблони на Марсе?"
Интересно, как быстро решится вопрос водородной инфраструктуры?
В Петербурге может появиться каршеринг с водородными автомобилями
Правительство Петербурга 9 ноября обсудит с корейским автоконцерном Hyundai и Минпромторгом РФ возможность использования автомобилей на водородном топливе в городском каршеринге. Об этом вице-губернатор Евгений Елин сообщил журналистам 6 ноября.
«Хотим вперед забежать и посмотреть, как это будет работать. Hyundai является мировым лидером, готов предоставить автомобили, мы попробуем организовать эксплуатацию», — сказал он. Детали проекта, в частности кто может стать оператором таких автомобилей, он не уточнил.
В конце 2018 года стало известно, что Hyundai Motor планирует вложить почти $ 7 млрд в разработку водородных топливных элементов для автомобилей, судов и дронов.
Ранее Hyundai Motor также сообщал о намерении производить битопливные автомобили, которые смогут ездить не только на газе, но и на обычном бензине. «Сейчас автомобиль проходит испытания», — уточнил заместитель председателя правления ПАО «Газпром» Виталий Маркелов.
https://www.fontanka.ru/2020/11/06/69531383/
#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф #npenergy #нти #центрыкомпетенцийнти #электротранспорт #электрокар #электроавтомобиль
Интересно, как быстро решится вопрос водородной инфраструктуры?
В Петербурге может появиться каршеринг с водородными автомобилями
Правительство Петербурга 9 ноября обсудит с корейским автоконцерном Hyundai и Минпромторгом РФ возможность использования автомобилей на водородном топливе в городском каршеринге. Об этом вице-губернатор Евгений Елин сообщил журналистам 6 ноября.
«Хотим вперед забежать и посмотреть, как это будет работать. Hyundai является мировым лидером, готов предоставить автомобили, мы попробуем организовать эксплуатацию», — сказал он. Детали проекта, в частности кто может стать оператором таких автомобилей, он не уточнил.
В конце 2018 года стало известно, что Hyundai Motor планирует вложить почти $ 7 млрд в разработку водородных топливных элементов для автомобилей, судов и дронов.
Ранее Hyundai Motor также сообщал о намерении производить битопливные автомобили, которые смогут ездить не только на газе, но и на обычном бензине. «Сейчас автомобиль проходит испытания», — уточнил заместитель председателя правления ПАО «Газпром» Виталий Маркелов.
https://www.fontanka.ru/2020/11/06/69531383/
#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф #npenergy #нти #центрыкомпетенцийнти #электротранспорт #электрокар #электроавтомобиль
Фонтанка.ру
В Петербурге может появиться каршеринг с водородными автомобилями
Правительство Петербурга 9 ноября обсудит с корейским автоконцерном Hyundai и Минпромторгом РФ возможность использования автомобилей на водородном топливе в городском каршеринге.
Водород - это же очень опасно, считают многие. И в связи с актуализацией тематики водородного транспорта в последнее время в социальных сетях ломается немало копий. Но как все обстоит на самом деле?
Что будет, если случится утечка и водород загорится? На самом деле, здесь лучше не теоретизировать, а провести эксперимент.
Еще в 2001 году в Университете Майами провели эксперимент по имитации утечки и возгорания топлива в абсолютно одинаковых условиях и одинаковых автомобилях. Перед вами - снимки, сделанные в интервале 0,3 секунды, минута, полторы и две минуты 20 секунд после начала эксперимента. Именно столько времени потребовалось, чтобы бензиновый автомобиль выгорел дотла изнутри. Водородный автомобиль завершил горение уже через полторы минуты и остался почти неповрежденным.
Кстати, более поздние краш-тесты водородных автомобилей ведущих производителей подтвердили результаты этого эксперимента почти 20-летней давности.
https://blog.fuelcellnation.com/2011/09/how-safe-is-hydrogen.html
#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф #npenergy #нти #центрыкомпетенцийнти #электротранспорт #электрокар #электроавтомобиль
Что будет, если случится утечка и водород загорится? На самом деле, здесь лучше не теоретизировать, а провести эксперимент.
Еще в 2001 году в Университете Майами провели эксперимент по имитации утечки и возгорания топлива в абсолютно одинаковых условиях и одинаковых автомобилях. Перед вами - снимки, сделанные в интервале 0,3 секунды, минута, полторы и две минуты 20 секунд после начала эксперимента. Именно столько времени потребовалось, чтобы бензиновый автомобиль выгорел дотла изнутри. Водородный автомобиль завершил горение уже через полторы минуты и остался почти неповрежденным.
Кстати, более поздние краш-тесты водородных автомобилей ведущих производителей подтвердили результаты этого эксперимента почти 20-летней давности.
https://blog.fuelcellnation.com/2011/09/how-safe-is-hydrogen.html
#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф #npenergy #нти #центрыкомпетенцийнти #электротранспорт #электрокар #электроавтомобиль
Fuel Cell Nation
How Safe is Hydrogen?
Now that I have your attention, I can tell you that it's pretty safe. But explosions like the picture on the left can happen. The photo is from the 2007 article "Blast Waves and Fireballs Generated by Hydrogen Fuel Tank...
Катионный потенциал поможет создавать натрий-ионные аккумуляторы
В последнее время очень много говорят и пишут о натрий-ионных аккумуляторах, которые благодаря доступности натрия являются хорошей альтернативой литий-ионным аккумуляторам там, где не очень важна масса устройства – например, для накопления энергии.
Производительность таких батарей ограничена имеющимися электродными материалами, особенно для натрий-ионных слоистых оксидов, что заставляет искать новые структуры катодов. То, как состав определяет структурную химию, имеет решающее значение для электрохимических характеристик, но его очень трудно предсказать, особенно для сложных композиций.
В новой статье, опубликованной в одном из двух «топовых» междисциплинарных журналов, Science, коллектив авторов из Китая, США, Франции и Нидерландов предлагает использовать особую величину, так называемый «катионный потенциал», вычисляемый через ионные потенциалы (отношение числа зарядов к радиусу иона, введенное Г. Картледжем и описывающее мощность поляризации иона). По данным авторов, этот катионный потенциал позволяет учитывать ключевые взаимодействия слоистых материалов и предсказывать упаковку катода, исходя из состава.
Поскольку структура укладки определяет функциональные свойства катода, новая методология предлагает решение для проектирования слоистых оксидов щелочных металлов. Статья так и называется: «Рациональный дизайн слоистых оксидных материалов для натрий-ионных аккумуляторов».
Источник: https://science.sciencemag.org/content/370/6517/708
#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
В последнее время очень много говорят и пишут о натрий-ионных аккумуляторах, которые благодаря доступности натрия являются хорошей альтернативой литий-ионным аккумуляторам там, где не очень важна масса устройства – например, для накопления энергии.
Производительность таких батарей ограничена имеющимися электродными материалами, особенно для натрий-ионных слоистых оксидов, что заставляет искать новые структуры катодов. То, как состав определяет структурную химию, имеет решающее значение для электрохимических характеристик, но его очень трудно предсказать, особенно для сложных композиций.
В новой статье, опубликованной в одном из двух «топовых» междисциплинарных журналов, Science, коллектив авторов из Китая, США, Франции и Нидерландов предлагает использовать особую величину, так называемый «катионный потенциал», вычисляемый через ионные потенциалы (отношение числа зарядов к радиусу иона, введенное Г. Картледжем и описывающее мощность поляризации иона). По данным авторов, этот катионный потенциал позволяет учитывать ключевые взаимодействия слоистых материалов и предсказывать упаковку катода, исходя из состава.
Поскольку структура укладки определяет функциональные свойства катода, новая методология предлагает решение для проектирования слоистых оксидов щелочных металлов. Статья так и называется: «Рациональный дизайн слоистых оксидных материалов для натрий-ионных аккумуляторов».
Источник: https://science.sciencemag.org/content/370/6517/708
#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
Science
Rational design of layered oxide materials for sodium-ion batteries
Layered metal oxides such as lithium cobalt oxide have attracted great attention for rechargeable batteries. In lithium cells, only the octahedral structure forms, but in sodium cells, trigonal prismatic structures are also possible. However, there is a lack…
Твердотелые Li-ion аккумуляторы: больше безопасности
Сегодня большинство наших гаджетов работает на литий-ионных батареях. И хотя они, как правило, безопасны, иногда все-таки загораются или взрываются.
Альтернативой традиционным аккумуляторам, которая быстро набирает популярность, может стать полностью твердотельная литиевая батарея (ASSLB). В отличие от обычных аккумуляторов, где электроды твердые, а электролит жидкий, в ASSLB и электроды, и электролит твердые, поэтому они гораздо более безопасны. Однако именно это свойство создает проблему: во время работы меняются объемы электролита и электродов, особенно в высокоемких аккумуляторных батареях. Это может привести к рассоединению их поверхностей, что приведет к снижению мощности.
Профессор Ен Мин Ли из Тэгу Кенбукского Института науки и техники (DGIST) говорит: «В то время как большинство исследователей сосредоточились на разработке новых материалов или улучшении свойств существующих полностью твердотельных литиевых батарей, мы выбрали другой путь и решили найти решения для минимизации дефектов в конструкциях электродов и элементов. Это заставило нас задуматься над тем, есть ли способ количественно проанализировать дефекты в этих батареях?».
Профессор Ли и его команда нашли ответ на свой вопрос, когда придумали хитроумную технику: трехмерную цифровую двойную платформу, в которой микроструктуры твердотельных интерфейсов могут быть визуализированы как детальные трехмерные копии реальной батареи.
Используя эту платформу, профессор Ли и его команда исследовали структуры границы электрод-электролит ASSLB на основе Li7La3Zr2O12. Они использовали 2-D фрагменты изображения выбранной области, сложили изображения для цифровой реконструкции трехмерной структуры, а затем провели структурный анализ.
Как и ожидалось, они обнаружили, что удельная площадь контакта ASSLB была намного меньше, чем у литий-ионных батарей. Это подтвердило эффективность их метода.
Ли так объясняет огромный потенциал этой методики: «Учитывая широкую применимость этой методики, нам кажется, что ее преимущества могут распространяться на все электродосодержащие устройства. Но на данный момент мы уверены, что наша методика поможет исследователям сэкономить время и деньги, легко проверяя дефекты в процессе изготовления батарей, помогая оптимизировать дизайн и в конечном итоге ускоряя коммерциализацию полностью твердотельных батарей».
Подробности исследования опубликованы в журнале Elsevier's Nano Energy: https://www.sciencedirect.com/science/article/pii/S2211285520310314
#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
Сегодня большинство наших гаджетов работает на литий-ионных батареях. И хотя они, как правило, безопасны, иногда все-таки загораются или взрываются.
Альтернативой традиционным аккумуляторам, которая быстро набирает популярность, может стать полностью твердотельная литиевая батарея (ASSLB). В отличие от обычных аккумуляторов, где электроды твердые, а электролит жидкий, в ASSLB и электроды, и электролит твердые, поэтому они гораздо более безопасны. Однако именно это свойство создает проблему: во время работы меняются объемы электролита и электродов, особенно в высокоемких аккумуляторных батареях. Это может привести к рассоединению их поверхностей, что приведет к снижению мощности.
Профессор Ен Мин Ли из Тэгу Кенбукского Института науки и техники (DGIST) говорит: «В то время как большинство исследователей сосредоточились на разработке новых материалов или улучшении свойств существующих полностью твердотельных литиевых батарей, мы выбрали другой путь и решили найти решения для минимизации дефектов в конструкциях электродов и элементов. Это заставило нас задуматься над тем, есть ли способ количественно проанализировать дефекты в этих батареях?».
Профессор Ли и его команда нашли ответ на свой вопрос, когда придумали хитроумную технику: трехмерную цифровую двойную платформу, в которой микроструктуры твердотельных интерфейсов могут быть визуализированы как детальные трехмерные копии реальной батареи.
Используя эту платформу, профессор Ли и его команда исследовали структуры границы электрод-электролит ASSLB на основе Li7La3Zr2O12. Они использовали 2-D фрагменты изображения выбранной области, сложили изображения для цифровой реконструкции трехмерной структуры, а затем провели структурный анализ.
Как и ожидалось, они обнаружили, что удельная площадь контакта ASSLB была намного меньше, чем у литий-ионных батарей. Это подтвердило эффективность их метода.
Ли так объясняет огромный потенциал этой методики: «Учитывая широкую применимость этой методики, нам кажется, что ее преимущества могут распространяться на все электродосодержащие устройства. Но на данный момент мы уверены, что наша методика поможет исследователям сэкономить время и деньги, легко проверяя дефекты в процессе изготовления батарей, помогая оптимизировать дизайн и в конечном итоге ускоряя коммерциализацию полностью твердотельных батарей».
Подробности исследования опубликованы в журнале Elsevier's Nano Energy: https://www.sciencedirect.com/science/article/pii/S2211285520310314
#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
Sciencedirect
Unraveling the limitations of solid oxide electrolytes for all-solid-state electrodes through 3D digital twin structural analysis
Solid oxides are attractive electrolyte materials for all-solid-state lithium batteries (ASSLBs) owing to their high stability and pure Li-ion conduct…
Сегодня у нас сразу несколько "Электромобилей по пятницам". А точнее - страница из каталога, представляющая несколько "бюджетных" моделей электромобилей стоимостью ниже 1600 долларов.
Надо сказать, что в американском каталоге 1907 года было представлено около 70 (!) моделей электромобилей - и топовые модели стоили более 2500 долларов.
#ипхф #наука #знания #историянауки #электрохимия #npenergy #нти #центрыкомпетенцийнти #интереснаянаука #ретрофото #ретро #электротранспорт #историятранспорта #электрокар #электроавтомобиль
Надо сказать, что в американском каталоге 1907 года было представлено около 70 (!) моделей электромобилей - и топовые модели стоили более 2500 долларов.
#ипхф #наука #знания #историянауки #электрохимия #npenergy #нти #центрыкомпетенцийнти #интереснаянаука #ретрофото #ретро #электротранспорт #историятранспорта #электрокар #электроавтомобиль
Media is too big
VIEW IN TELEGRAM
Форум "Сильные идеи нового времени" подошел к концу, а мы предлагаем вам посмотреть небольшой ролик о водородных технологиях нашего Центра, который мы представляли на этом мероприятии.
#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф #npenergy #нти
#наука #знания #фото #авто #водород #science #hydrogen #greenenergy #npenergy #auto #supercar #транспорт #нти #ипхф #npenergy #нти
Исследователи из Калифорнийского университета предложили новый метод прямого восстановления катодов литий-железофосфатных батарей, которые рассматриваются как альтернатива литий-кобальтатным аккумуляторам (к примеру, именно на таких источниках энергии ездит новая Tesla Model 3). Исследование опубликовано в журнале Joule крупного научного издательского дома Cell Press в рубрике Report.
«Утилизировать такие батареи экономически невыгодно. Мы сталкиваемся с аналогичной проблемой, когда имеем дело с пластмассами, — материалы дешевые, а методы их утилизации — нет», - говорит один из авторов исследования Чжэн Чэнь.
Новый метод, предложенный электрохимиками, подразумевает прямое восстановление (а точнее – переработку) катодного материала нагревом порошка деградированного катода с солями лития и лимонной кислотой до 60-80 градусов с последующим изготовлением новых катодов.
По данным статьи, этот метод снижает на 80-90 процентов количество энергии, необходимое для утилизации такого типа катодов, при этом он еще и экологичнее.
Источник: https://www.cell.com/joule/fulltext/S2542-4351(20)30497-9
#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование
«Утилизировать такие батареи экономически невыгодно. Мы сталкиваемся с аналогичной проблемой, когда имеем дело с пластмассами, — материалы дешевые, а методы их утилизации — нет», - говорит один из авторов исследования Чжэн Чэнь.
Новый метод, предложенный электрохимиками, подразумевает прямое восстановление (а точнее – переработку) катодного материала нагревом порошка деградированного катода с солями лития и лимонной кислотой до 60-80 градусов с последующим изготовлением новых катодов.
По данным статьи, этот метод снижает на 80-90 процентов количество энергии, необходимое для утилизации такого типа катодов, при этом он еще и экологичнее.
Источник: https://www.cell.com/joule/fulltext/S2542-4351(20)30497-9
#ипхф #наука #знания #электрохимия #npenergy #центрыкомпетенцийнти #интереснаянаука #образование