Forwarded from Machinelearning
VEnhancer - генеративная система апсемлинга пространственно-временных характеристик, которая улучшает результаты существующих методов преобразования текста в видео путем добавления большего количества деталей в пространственной области и синтетического детализированного движения во временной области.
Он гибко адаптируется к различным коэффициентам апсемплинга в диапазоне 1x~8x.
VEnhancer устраняет артефакты и коллизии движения сгенерированных видео, используя диффузионную модель и дообученные модели ControlNet.
Несколько дней назад VEnhancer получил обновление:
Эксперименты, проведенные во время разработки показывают, что VEnhancer превосходит существующие методы апсемплинга видео и современные методы улучшения синтезированных видео.
⚠️ Для обработки видео в 2K разрешении при fps=>24 требуется около 80 GB VRAM.
Использование VEnhancer возможно через CLI, с помощью GradioUI и в виде неофициальной ноды (WIP) для ComfyUI.
# Clone repo
git clone https://github.com/Vchitect/VEnhancer.git
cd VEnhancer
# Create environment
conda create -n venhancer python=3.10
conda activate venhancer
# Install requirments:
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install -r requirements.txt
sudo apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
bash run_VEnhancer.sh
python gradio_app.py
@ai_machinelearning_big_data
#AI #Text2Video #VEnchancer #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍7🔥2
Обычно в генерации видео модели обрабатывают весь ролик "размазанным" шумом — как бы в целом.
А тут модель управляет шумом отдельно для каждого кадра, и делает это с помощью векторизованных "timesteps" (временных шагов) — более гибко, точно и эффективно.
Новая модель генерации видео на базе Mochi1-Preview и поддерживает:
🔹 Text-to-Video
🔹 Image-to-Video
🔹 Frame Interpolation
🔹 Video Transitions
🔹 Looping, удлинение видео и многое другое
⚡ Эффективность:
▪ 16× H800 GPU
▪ 0.1k GPU-часов
▪ Обучение: 500 итераций, batch size 32
▪ По заявления разработчиков - стоимость обучения всего 100$ 🤯
▪Github
▪Paper
▪Dataset
▪Model
#diffusion #videogen #pusa #opensource #AI #text2video #mochi1 #fvdm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤3🔥2