Группа исследователей из Гонконгского университета науки и технологий (HKUST) совместно с Huawei Noah’s Ark Lab разработали принципиальной новую методику создание изображений в сверхвысоком разрешении (до 6000 px).
Новая архитектура основана на совокупности диффузионных патчей, принципов технологии ScaleCrafter для управления расширением сверточных блоков, ResAdapter для точной настройки базовой модели T2I и адаптация энтропии внимания на уровне внимания сети шумоподавления.
В качестве исходной генеративной модели используется StableCascade
На сегодняшний день, исследователи дорабатывают механизм сохранения детализации для достижения максимального фотореалистичного результата. В ближайшее время планируется публикация кода и необходимых сопутствующих моделей для инференса и самостоятельной тренировки.
О требуемых вычислительных ресурсах для запуска пайплайна не сообщается.
@machinelearning_ru
#Text2Image #UltraHiRes #Diffusion #Ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤1🔥1
Forwarded from Machinelearning
Stability AI опубликовала Stable Diffusion 3.5 Large - модель text-to-image с 8 млрд. параметров.
В основе SD 3.5 Large - архитектура Multimodal Diffusion Transformer (MMDiT). Модель использует три предобученных текстовых энкодера:
OpenCLIP-ViT/G и CLIP-ViT/L имеют контекстную длину 77 токенов, а T5-xxl - 77/256 токенов.
Модель доступна по API в сервисах - Stability AI, Replicate и Deepinfra.
Для локального использования модели рекомендуется использовать ComfyUI (базовый воркфлоу) или Diffusers.
⚠️ Инференс квантованной NF4-версии на ограниченных VRAM
⚠️ Подробные инструкции по файнтюну и тренировке LoRA для Stable Diffusion 3.5 Large.
# install Diffusers
pip install -U diffusers
# Inference
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
image = pipe(
"A happy woman laying on a grass",
num_inference_steps=28,
guidance_scale=3.5,
).images[0]
image.save("woman.png")
@ai_machinelearning_big_data
#AI #ML #Diffusion #SDL #StabilityAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍3🔥1
Обычно в генерации видео модели обрабатывают весь ролик "размазанным" шумом — как бы в целом.
А тут модель управляет шумом отдельно для каждого кадра, и делает это с помощью векторизованных "timesteps" (временных шагов) — более гибко, точно и эффективно.
Новая модель генерации видео на базе Mochi1-Preview и поддерживает:
🔹 Text-to-Video
🔹 Image-to-Video
🔹 Frame Interpolation
🔹 Video Transitions
🔹 Looping, удлинение видео и многое другое
⚡ Эффективность:
▪ 16× H800 GPU
▪ 0.1k GPU-часов
▪ Обучение: 500 итераций, batch size 32
▪ По заявления разработчиков - стоимость обучения всего 100$ 🤯
▪Github
▪Paper
▪Dataset
▪Model
#diffusion #videogen #pusa #opensource #AI #text2video #mochi1 #fvdm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤3🔥2