Вопросы и ответы к интервью для Python Developer
В этом репозитории собраны популярные вопросы по Python и смежным темам: Data Science, Machine Learning, Django, ООП, принципы программирования.
Также в проекте есть вопросы по основам HTML, фронтенд и БД, которые позволят вам повторить важные моменты, на которых зачастую останавливаются интервьюеры:
https://github.com/yakimka/python_interview_questions
#python
@machinelearning_interview
В этом репозитории собраны популярные вопросы по Python и смежным темам: Data Science, Machine Learning, Django, ООП, принципы программирования.
Также в проекте есть вопросы по основам HTML, фронтенд и БД, которые позволят вам повторить важные моменты, на которых зачастую останавливаются интервьюеры:
https://github.com/yakimka/python_interview_questions
#python
@machinelearning_interview
Python_вопросы_и_ответы_на_интервью.pdf
335.4 KB
Список вопросов и ответов для подготовки перед собеседованием на Python разработчика
#python #cheatsheet #job #datascience
@machinelearning_interview
#python #cheatsheet #job #datascience
@machinelearning_interview
🔥 Дайджест полезных материалов из мира Машинного обучения за неделю
Почитать:
— Bounding boxes для обнаружения объектов — что это, простым языком
— Разработка алгоритмов обработки данных в реальном времени на Python
— Лучшие практики Golang (20 лучших)
— Нейронные сети для новичков и профи: топ бесплатных курсов по ИИ
— 5 уровней зрелости MLOps
— Персонализация тарифного плана для новых абонентов: как оцифровать привлекательность
— Создание видео zoom in и zoom out с помощью inpainting в Kandinsky
— Парк юрского периода глазами нейросети: как развернуть Diffusers для генерации изображений за 10 минут
— Ближайшее будущее AI в рентгенологии. Мои комментарии к статье в RSNA
— Использование Insightface для быстрого поиска и сравнения лиц на изображениях
— OpenAI DevDay – ещё 5 видео про то, как работает компания, и как AI применять разработчикам
— How to install NVIDIA drivers for machine learning on Ubuntu
— Working through the fast.ai book in Rust - Part 1
— Why ChatGPT and other LLMs are overrated and won't take your job
— Demystifying Transformer Models: Unveiling the Magic of Natural Language Processing
— A Quick Look At Natural Language Generation (NLG)
— AI Log #2: What is a Cost Function in Machine Learning?
— The Next Generation of AI Developer Tools
— AI Development Guide 2024
— What is a Conditional Generative Adversarial Network?
— The State of Serverless GPU Part -2
Посмотреть:
🌐 Lightning Interview “Large Language Models: Past, Present and Future” (⏱ 01:00:00)
🌐 Leveraging Generative AI in Education - A M Aditya (⏱ 31:24)
Посмотреть:
🌐 Пишем генератор Shorts видео на Python для заработка на YouTube. (⏱ 11:50)
🌐 Озвучка и генерации контента с помощью #Python и AI (⏱ 00:44)
🌐 Замена лица на любой фотографии с помощью #python БЕСПЛАТНО! (⏱ 00:59)
🌐 Lightning Interview “Large Language Models: Past, Present and Future” (⏱ 01:00:00)
🌐 Thomas Scialom, PhD - Large Language Models: Past, Present and Future (⏱ 34:45)
🌐 Leveraging Generative AI in Education - A M Aditya (⏱ 31:24)
🌐 AI Art: How is This Quality Even Possible? (⏱ 05:29)
Хорошего дня!
#digest #machinelearning
@machinelearning_interview
Почитать:
— Bounding boxes для обнаружения объектов — что это, простым языком
— Разработка алгоритмов обработки данных в реальном времени на Python
— Лучшие практики Golang (20 лучших)
— Нейронные сети для новичков и профи: топ бесплатных курсов по ИИ
— 5 уровней зрелости MLOps
— Персонализация тарифного плана для новых абонентов: как оцифровать привлекательность
— Создание видео zoom in и zoom out с помощью inpainting в Kandinsky
— Парк юрского периода глазами нейросети: как развернуть Diffusers для генерации изображений за 10 минут
— Ближайшее будущее AI в рентгенологии. Мои комментарии к статье в RSNA
— Использование Insightface для быстрого поиска и сравнения лиц на изображениях
— OpenAI DevDay – ещё 5 видео про то, как работает компания, и как AI применять разработчикам
— How to install NVIDIA drivers for machine learning on Ubuntu
— Working through the fast.ai book in Rust - Part 1
— Why ChatGPT and other LLMs are overrated and won't take your job
— Demystifying Transformer Models: Unveiling the Magic of Natural Language Processing
— A Quick Look At Natural Language Generation (NLG)
— AI Log #2: What is a Cost Function in Machine Learning?
— The Next Generation of AI Developer Tools
— AI Development Guide 2024
— What is a Conditional Generative Adversarial Network?
— The State of Serverless GPU Part -2
Посмотреть:
🌐 Lightning Interview “Large Language Models: Past, Present and Future” (⏱ 01:00:00)
🌐 Leveraging Generative AI in Education - A M Aditya (⏱ 31:24)
Посмотреть:
🌐 Пишем генератор Shorts видео на Python для заработка на YouTube. (⏱ 11:50)
🌐 Озвучка и генерации контента с помощью #Python и AI (⏱ 00:44)
🌐 Замена лица на любой фотографии с помощью #python БЕСПЛАТНО! (⏱ 00:59)
🌐 Lightning Interview “Large Language Models: Past, Present and Future” (⏱ 01:00:00)
🌐 Thomas Scialom, PhD - Large Language Models: Past, Present and Future (⏱ 34:45)
🌐 Leveraging Generative AI in Education - A M Aditya (⏱ 31:24)
🌐 AI Art: How is This Quality Even Possible? (⏱ 05:29)
Хорошего дня!
#digest #machinelearning
@machinelearning_interview
⚡️ Бесплатный курс по фундаментальным моделям от Университета Ватерлоо
Курс охватывает обширный круг тем, связанных с глубоким обучением и его практическими приложениями.
Отличный курс для подготовки к собесу.
Вот краткий обзор тем:
🔘 Рекуррентные и свёрточные нейронные сети (RNN и CNN). 🔘 Обработка естественного языка (NLP) и компьютерное зрение (CV).
🔘 Механизмы внимания и трансформеры.
🔘 Предобучение языковых моделей.
🔘 Обучение с подкреплением через обратную связь (RLHF). 🔘 Создание мультимодальных моделей.
🔘 Диффузионные модели и генерация изображений.
📌 Курс
@machinelearning_interview
#datascience #python #machinelearning
Курс охватывает обширный круг тем, связанных с глубоким обучением и его практическими приложениями.
Отличный курс для подготовки к собесу.
Вот краткий обзор тем:
🔘 Рекуррентные и свёрточные нейронные сети (RNN и CNN). 🔘 Обработка естественного языка (NLP) и компьютерное зрение (CV).
🔘 Механизмы внимания и трансформеры.
🔘 Предобучение языковых моделей.
🔘 Обучение с подкреплением через обратную связь (RLHF). 🔘 Создание мультимодальных моделей.
🔘 Диффузионные модели и генерация изображений.
📌 Курс
@machinelearning_interview
#datascience #python #machinelearning
Полезный курс сосредоточен на введении в вычисления и визуализацию данных в Python. Подходит для тех, кто не имеет опыта программирования.
Вот темы, которые охватывает курс:
▪️основы Python (в Jupyter);
▪️базовые вычисления и работа с данными (NumPy, Pandas);
▪️работа с API;
▪️визуализация данных (Matplotlib, Seaborn);
▪️лучшие практики Python.
🔗 Ссылка на курс
#курс #python
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!
Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU!
✨ Как это работает?
Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова
cuml.patch.apply()
вы "патчите" установленный у вас scikit-learn прямо в памяти.Теперь, когда вы вызываете, например,
KNeighborsClassifier
или PCA
из sklearn:Ключевые преимущества:
2 строчки:import cuml.patch и cuml.patch.apply().
Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.
👇 Как использовать:
Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):
python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend
Добавьте в начало скрипта:
import cuml.patch
cuml.patch.apply()
Используйте scikit-learn как обычно!
Попробуйте и почувствуйте разницу! 😉
▪Блог-пост
▪Colab
▪Github
▪Ускоряем Pandas
@ai_machinelearning_big_data
#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
1. 30-Days-Of-Python — 30-дневный челлендж по основам Python.
2. Python Basics — азы Python для новичков, просто и с примерами.
3. Learn Python — справочник с кодом, пояснениями и практикой.
4. Python Guide — гайд по практикам, инструментам и сложным темам.
5. Learn Python 3 — руководство по Python 3 с практикой для начинающих.
6. Python Programming Exercises — 100+ задач по Python.
7. Coding Problems — алгоритмы и структуры данных для собесов.
8. Project-Based-Learning — Python через реальные проекты.
9. Projects — идеи проектов для прокачки навыков.
10. 100-Days-Of-ML-Code — ML на Python шаг за шагом.
11. TheAlgorithms/Python — алгоритмы и структуры данных на Python.
12. Amazing-Python-Scripts — полезные скрипты: от утилит до автоматизации.
13. Geekcomputers/Python — скрипты для сети, файлов и задач.
14. Materials — код и проекты от Real Python.
15. Awesome Python — топ фреймворков, библиотек и ресурсов.
16. 30-Seconds-of-Python — короткие сниппеты для быстрых решений.
17. Python Reference — скрипты, туториалы и лайфхаки.
#python #github #learning
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Python уже несколько лет уверенно лидирует среди языков программирования, а теперь стал ещё ближе к железу. На GTC 2025 NVIDIA объявила о полноценной интеграции Python в свой CUDA-стек.
Это значит, что писать код для GPU можно будет напрямую на Python — без погружения в C++ или Fortran. Как подчеркнул Стивен Джонс, архитектор CUDA, цель — сделать инструмент естественным для Python-разработчиков: «Это не перевод синтаксиса C на Python. Все должно работать так, как привыкли разработчики».
Раньше CUDA требовала глубокого понимания низкоуровневых языков и это здорово ограничивало аудиторию. Сейчас, когда Python стал стандартом в ML и DS, NVIDIA открывает двери для миллионов программистов. По данным The Futurum Group, в 2023 году CUDA использовали 4 миллиона человек — теперь их число может резко вырасти.
Техническая часть такая же обширная, как и ожидания этого события профессиональным сообществом.
cuPyNumeric
— аналог NumPy
, который переносит вычисления с CPU на GPU буквально заменой импорта.Но главное — новый подход к параллельным вычислениям. Вместо ручного управления потоками, как в C++, NVIDIA предлагает модель CuTile, которая оперирует массивами, а не отдельными элементами. Это упрощает отладку и делает код читаемым, не жертвуя скоростью. По сути, разработчики получают высокоуровневую абстракцию, скрывающую сложности железа, но сохраняющую гибкость.
Пока CuTile доступен только для Python, но в планах — расширение для C++. Это часть стратегии NVIDIA по поддержке новых языков: Rust и Julia уже на походе.
Python-сообщество уже может экспериментировать — например, интегрировать CUDA-ядра в PyTorch или вызывать привычные библиотеки. Теперь даже те, кто никогда не писал на C++, смогут использовать всю мощь GPU — осталось проверить, как это скажется на скорости создания прекрасных LLM светлого будущего.
@ai_machinelearning_big_data
#AI #ML #Python #CUDA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM