Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!
Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU!
✨ Как это работает?
Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова
cuml.patch.apply()
вы "патчите" установленный у вас scikit-learn прямо в памяти.Теперь, когда вы вызываете, например,
KNeighborsClassifier
или PCA
из sklearn:Ключевые преимущества:
2 строчки:import cuml.patch и cuml.patch.apply().
Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.
👇 Как использовать:
Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):
python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend
Добавьте в начало скрипта:
import cuml.patch
cuml.patch.apply()
Используйте scikit-learn как обычно!
Попробуйте и почувствуйте разницу! 😉
▪Блог-пост
▪Colab
▪Github
▪Ускоряем Pandas
@ai_machinelearning_big_data
#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Полный гид по GPU-экосистеме — без воды и маркетинга
Если ты путаешься в CUDA, OpenCL, SYCL и HIP — этот гайд от ENCCS расставит всё по полочкам. Это не просто обзор, а чёткое объяснение, как устроен мир GPU-программирования сегодня.
🧠 Что ты узнаешь:
🔹 Как и почему GPU радикально отличается от CPU
🔹 Из чего состоит стек GPU-технологий:
— CUDA и его аналоги (HIP, SYCL, OpenCL)
— Директивы: OpenMP, OpenACC
🔹 Какие языки и стандарты поддерживают какую архитектуру
🔹 NVIDIA, AMD, Intel — кто что умеет и чем отличается
🔹 Модели памяти, исполнения, и что влияет на производительность
📌 Гайд подходит для:
• Разработчиков HPC и научных расчётов
• Инженеров ML/AI, желающих копнуть глубже
• Всех, кто хочет разобраться в низкоуровневом GPU-стеке без маркетингового тумана
📖 Читать:
https://enccs.github.io/gpu-programming/2-gpu-ecosystem/
🔥 Один из самых понятных и системных разборов GPU-мира на сегодня.
#GPU #CUDA #OpenCL #HIP #SYCL #HPC #AI #HighPerformanceComputing
Если ты путаешься в CUDA, OpenCL, SYCL и HIP — этот гайд от ENCCS расставит всё по полочкам. Это не просто обзор, а чёткое объяснение, как устроен мир GPU-программирования сегодня.
🧠 Что ты узнаешь:
🔹 Как и почему GPU радикально отличается от CPU
🔹 Из чего состоит стек GPU-технологий:
— CUDA и его аналоги (HIP, SYCL, OpenCL)
— Директивы: OpenMP, OpenACC
🔹 Какие языки и стандарты поддерживают какую архитектуру
🔹 NVIDIA, AMD, Intel — кто что умеет и чем отличается
🔹 Модели памяти, исполнения, и что влияет на производительность
📌 Гайд подходит для:
• Разработчиков HPC и научных расчётов
• Инженеров ML/AI, желающих копнуть глубже
• Всех, кто хочет разобраться в низкоуровневом GPU-стеке без маркетингового тумана
📖 Читать:
https://enccs.github.io/gpu-programming/2-gpu-ecosystem/
🔥 Один из самых понятных и системных разборов GPU-мира на сегодня.
#GPU #CUDA #OpenCL #HIP #SYCL #HPC #AI #HighPerformanceComputing