Machine learning Interview
24.4K subscribers
1.03K photos
67 videos
12 files
695 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
加入频道
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ СuML от NVIDIA: Scikit-learn на скорости GPU – без единой строчки нового кода!

Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!

Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU! 🔥

Как это работает?

Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.

Теперь, когда вы вызываете, например, KNeighborsClassifier или PCA из sklearn:

▶️Патч проверяет, есть ли у вас GPU NVIDIA.
▶️Проверяет, есть ли в cuml быстрая GPU-версия этого алгоритма.
▶️Если да – запускает ускоренную версию на GPU! 🏎️
▶️Если нет (нет GPU или алгоритм не поддерживается) – спокойно запускает обычную CPU-версию scikit-learn.

Ключевые преимущества:

✔️ Нулевые изменения кода: Ваш scikit-learn код остается прежним. Добавляете только 2 строчки:
import cuml.patch и cuml.patch.apply().
✔️ Колоссальное ускорение: Получите прирост производительности на порядки для поддерживаемых алгоритмов (KNN, PCA, линейные модели, Random Forest (инференс), UMAP, DBSCAN, KMeans и др.) за счет мощи GPU.
✔️Автоматическое переключение между GPU и CPU. Ваш скрипт будет работать в любом случае.

Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.

👇 Как использовать:

Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):


python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend


Добавьте в начало скрипта:


import cuml.patch
cuml.patch.apply()


Используйте scikit-learn как обычно!

Попробуйте и почувствуйте разницу! 😉

Блог-пост
Colab
Github
Ускоряем Pandas

@ai_machinelearning_big_data


#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Полный гид по GPU-экосистеме — без воды и маркетинга

Если ты путаешься в CUDA, OpenCL, SYCL и HIP — этот гайд от ENCCS расставит всё по полочкам. Это не просто обзор, а чёткое объяснение, как устроен мир GPU-программирования сегодня.

🧠 Что ты узнаешь:

🔹 Как и почему GPU радикально отличается от CPU
🔹 Из чего состоит стек GPU-технологий:
 — CUDA и его аналоги (HIP, SYCL, OpenCL)
 — Директивы: OpenMP, OpenACC
🔹 Какие языки и стандарты поддерживают какую архитектуру
🔹 NVIDIA, AMD, Intel — кто что умеет и чем отличается
🔹 Модели памяти, исполнения, и что влияет на производительность

📌 Гайд подходит для:
• Разработчиков HPC и научных расчётов
• Инженеров ML/AI, желающих копнуть глубже
• Всех, кто хочет разобраться в низкоуровневом GPU-стеке без маркетингового тумана

📖 Читать:
https://enccs.github.io/gpu-programming/2-gpu-ecosystem/

🔥 Один из самых понятных и системных разборов GPU-мира на сегодня.

#GPU #CUDA #OpenCL #HIP #SYCL #HPC #AI #HighPerformanceComputing