Зоопарк из слоновой кости
23.6K subscribers
1.29K photos
74 videos
23 files
3.95K links
Руководство по выживанию в науке, полезные советы начинающим, новости из научной жизни и просто околонаучный треп
Версия VK: https://vk.com/ivory_zoo

Вопросы? Предложения? @ivory_zoo
加入频道
#зоопарк_одобряет #дорогая_редакция

Загрязнение микропластиком водной среды считается одной из наиболее серьезных экологических проблем, причем здесь есть целая совокупность факторов - как физических, так и химических. Коллеги из Тихоокеанского океанологического института ДВО #РАН @toidvoran (Владивосток) изучили токсические эффекты двух видов разноразмерного пластика (фрагментов полиэтиленовой пленки и микрочастиц полистирола) при воздействии на двустворчатого моллюска - тихоокеанскую мидию (которая, кстати, съедобна). Показано, что независимо, от размеров и вида полимера, частицы пластика вызывают развитие окислительного стресса в органах дыхания и пищеварения мидий.

Работа опубликована в Journal of Xenobiotics (IF = 6.8), ну и по традиции отметим, что тут тоже есть грант РНФ - как раз на тему микропластика

https://www.mdpi.com/2039-4713/14/4/97
#зоопарк_одобряет #дорогая_редакция

Суспензионные культуры клеток высших растений – хорошо известная платформа. Ее можно использовать для промышленного синтеза целевых соединений вторичного обмена с множеством полезных свойств - от антиоксидантных до противораковых. Этот подход позволяет получать промышленно значимые количества биомассы даже краснокнижных растений.

На фитохимические свойства каждой такой культуры влияет множество факторов – от состава питательной среды и условий культивирования до типа ткани растения, из которой была получена клеточная линия. В качестве эксплантов используют разные ткани растений, чаще всего молодые листья, гипокотили, семядоли или апикальные меристемы корней.

В свежей работе коллеги из Института физиологии растений #РАН в коллаборации с РУДН описали и изучили первую в мире длительно культивируемую суспензионную культуру из нетипичного экспланта - развивающихся ариллусов бересклета Максимовича (это масличные органы, в которых запасаются жирные масла, жирные кислоты, каротиноиды и небольшое количество антоцианов). Культура клеток бересклета сохранила способность к синтезу С20-С26 жирных кислот, жирного масла и антоцианов (в количестве на порядки большем, чем в тканях ариллусов) на протяжении более 10 лет (!) непрерывного культивирования - это очень необычный результат для подобного рода биотехнологических систем. При этом оказалось, что можно изменять направления биосинтеза между первичными метаболитами (жирными кислотами с очень длинной цепью) и вторичными - антоцианами, изменяя условия освещения (свет/темнота) или действуя на клетки метилжасмонатом.

Эта работа - одна из немногих, в которой экспериментально показана тесная взаимосвязь между метаболическими путями первичного и вторичного обмена в культивируемых клетках высших растений и продемонстрировано, как можно "склонить" клетку к преимущественному биосинтезу длинноцепочечных жирных кислот или, наоборот, антоцианов.

Статья опубликована в Plant Physiology and Biochemistry (IF=6.1 Q1) - и тоже при поддержке РНФ
#зоопарк_одобряет #дорогая_редакция

Боросиликатные стекла используются как матрицы для хранения радиоактивных отходов, в основе которых - актиноиды. В качестве "имитаторов" этих элементов (например, плутония) часто используются химически очень похожие лантаноиды - и здесь есть и еще один фактор: стекла с ними могут еще и иметь интересные оптические свойства.

Коллеги из ФТИ #РАН (Санкт-Петербург) и Института химии силикатов (филиала Курчатовского института - ПИЯФ) методами комбинационного рассеяния света и время-разрешённой люминесценции исследовали структуру и оптические характеристики алюмоборосиликатных стекол, допированных ионами церия (Ce) и гадолиния (Gd) и содержащих неконтролируемую примесь ионов европия (Eu), в зависимости от состава стекла. Оказалось, что степень полимеризации стекла и ряд других параметров нелинейно зависит от соотношения концентраций Ce/Gd, то есть имеет место эффект содопирования - а это полезная информация для создания стёкол с высокой радиационно-оптической стойкостью..

Статья вышла в Ceramics International (IF = 5.1)

https://www.sciencedirect.com/science/article/pii/S0272884224060528
#зоопарк_одобряет #дорогая_редакция

Актинидии – род растений, самым известным представителем которого является киви (фоточка для привлечения внимания) с центром происхождения в Китае. Но на нашем Дальнем Востоке есть свои виды мелкоплодных актинидий, причем в некоторых из них витамина С еще больше, чем в их крупноплодном родственнике.

В Главном ботаническом саду #РАН (Москва) собрана коллекция дальневосточных актинидий, но до недавнего времени она не была охарактеризована полностью в генетическом ключе. В недавней работе коллег из ГБС РАН, сделанной совместно с Курчатником, описано геномное разнообразие всей коллекции с помощью RAD-секвенирования, оценивающего отличия по однонуклеотидным полиморфизмам. Помимо таксономических отличий также определены важные для селекции подобных растений характеристики – плоидность образцов и полиморфизмы, по-видимому, связанные с опадаемостью плодов в случае одного из видов.

Статья вышла в Plants (IF = 4.0)

https://www.mdpi.com/2223-7747/14/1/7
#зоопарк_одобряет #дорогая_редакция

КР-спектроскопия (она же Раман-спектроскопия) – очень чувствительный метод, который позволяет регистрировать единичные молекулы с точностью "отпечатков пальцев" - но не все, а только соединения с определенной поляризацией связей. Этот метод массово используют для быстрого "отлова", например, взрывчатки, благо приборы эти очень компактны и более неприхотливы, чем, скажем, масс-спектрометры.

Проблема тут в том, что многие нехорошие вещества, опасные в очень низких концентрациях (тот же ботулотоксин), не дают хорошей интенсивности рамановского сигнала. Соответственно, их этим методом и не ловят, а хотелось бы. Для некоторых "раман-неактивных" веществ проблему решают делают «видимыми» переводом в окисленную форму, делают это перекисью, и чаще всего в присутствии фермента (пероксидазы) и для катализа, и для того, чтобы процесс был селективным. Это технически сложная методика.

Коллеги из ИФХЭ #РАН и с химфака МГУ @chemistryofmsu собрали куда более универсальную платформу для "проявления" невидимых в КР-спектрах соединений,. Суть метода: на монослой оксида графена нанесли цинковый комплекс фталоцианина как сенсибилизатор. Такой чип генерирует только синглетный кислород (селективный окислитель) при облучении видимым светом. Если добавить на чип плазмонные частицы и нанести невидимый в КР-спектре аналит, то достаточно нескольких секунд облучения, чтобы получить отлично разрешенный интенсивный рамановский спектр для концентрации вещества 10-8 моль (это ооооочень низкая концентрация, если что).

Перспектива ясная - такие чипы можно использовать для быстрого выявления методом КР таких соединений, для которых раньше это было невозможно. Криминалистика, лаборатории контроля качества - масса вариантов.

Статья вышла в Small Methods (IF = 10.7)

https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401420
This media is not supported in your browser
VIEW IN TELEGRAM
#зоопарк_одобряет

Видео, которое порадует ценителей индустриальной эстетики - прямо со стройплощадки: в ФИЦ Иркутский институт химии СО #РАН почти готов к пуску цех по производству противотурбулентных реагентов для нефтянки (около 40 тонн в год). Именно так и выглядит "внебюджет здорового человека".

А ещё тут будет создан инжиниринговый центр по малотоннажной химии - на это государство уже выделило грант в 300 млн. По сути, старый хороший исследовательский институт, сохраняя фундаменталку, существенно усиливает прикладную компоненту, постепенно мутируя в некое подобие НПО советской модели, о которой в последнее время вспоминают все чаще.
#дорогая_редакция #зоопарк_одобряет

Из растительной биомассы можно получить целый ряд соединений фурана (например, фурфурол) - ценное сырье для химпрома, которое можно превращать в нужные продукты в сравнительно небольшое число стадий. Часто один из первых этапов - разложение сильной кислотой, и здесь важно грамотно подобрать растворитель, потому что и выход, и состав продуктов от этого зависят напрямую, а для промышленности это многие и многие тонны.
Свежая работа химиков школы Ананикова @ananikovlab - ТулГУ @tulauniversity и ИОХ #РАН @ziocras - большое исследование того, насколько разные производные фурана стабильны в широком диапазоне условий, по сути, своего рода набор правил выбора растворителей для лабораторных синтезов и, в перспективе, не только.

Статья вышла в ChemSusChem (IF = 7.5) и попала на обложку свежего выпуска журнала
#зоопарк_одобряет #дорогая_редакция

Гомологичная рекомбинация - это безошибочный способ устранения двуцепочечных разрывов в геноме. В случае нарушения этого механизма (состояние, называемое дефицитом гомологичной рекомбинации - HRD), например, из-за мутаций в генах, кодирующих соответствующие белки, в геноме накапливается большое число крупных перестроек.
В начале 2000х годов было показано, что опухоли с HRD хорошо и прицельно убиваются соединениями-ингибиторами фермента PARP1, который участвует во всех механизмах репарации ДНК. И тогда встал вопрос о том, как выявлять опухоли с таким нарушением. Изначально для этого выявляли мутации в двух генах, которые регулируют многие процессы при гомологичной рекомбинации - BRCA1 и BRCA2, но стало понятно, что это только около 20% всех пациентов, которым эти препараты помогают. Тогда нашли, что в клетках с HRD есть особые паттерны крупных перестроек, по которым можно достаточно надежно предсказывать, будет ли препарат эффективен.

Свежий обзор коллег из ИХБФМ СО #РАН (Новосибирск) - о выявлении этих паттернов, объяснении механизмов их возникновения, проблемах у текущих подходов и возможных новых направлениях развития этих подходов.

Статья опубликована в Cancer and Metastasis Reviews (IF = 7.7)

https://link.springer.com/article/10.1007/s10555-024-10238-y
#зоопарк_одобряет #дорогая_редакция

Новые люминесцентные метки против подделок: ФИАНовцы @lpi_ras совместно с коллегами из Института спектроскопии #РАН предложили оригинальный подход, основанный на различии в скорости фотовыцветания люминесцентных меток. Они получили серию комплексов Eu3+ с галогенированными дикетонами, обладающих идентичным спектром люминесценции, но различной скоростью фотовыцветания при УФ-
облучении. На их основе была создана печатная защитная метка, невидимая при обычном освещении, но и люминесцирующая в УФ-лучах. При малой мощности излучения метка люминесцирует равномерно, однако при повышении мощности часть метки быстро выцветает, и становится видна зашифрованная информация.
Практическое применение тут вполне очевидно: контроль качества товаров, требующих защиты от света, а также новый подход к идентификации подлинности документов и ценных бумаг.

Статья опубликована в журнале Materials Chemistry Frontiers (IF 6.0)

https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00933a
#зоопарк_одобряет

Поскольку наш Зоопарк все-таки именно Зоопарк, хотим порадовать дружеским пяром коллег из Зоологического института #РАН, что в Петербурге. Прямо рядышком с Кунсткамерой и историческим зданием СПбГУ находицца их замечательный Зоологический музей с впечатляющей коллекцией того, что плавает, летает, ползает, кусается и так далее. Вот их сайт, там регулярно устраиваются тематические выставки, интерактивные экскурсии и много чего еще - можно поглядывать за новостями вот тут, например.

Короче, для тех, кто интересуется биологией и приехал в старый добрый город на Неве, это точно must see.

(фоточка нашего слоняры мамонтяры с сайта музея)
#обозревая_происходящее

Хотя в конце прошлого года сроки запуска синхротрона СКИФ перенесли на конец 2025 года, работа над ним идет полным ходом.

Интересная заметка одного из основных игроков этого проекта, Института ядерной физики СО #РАН (Новосибирск), о том, как делаются импульсные магниты для бустера-синхротрона (и вообще как работает синхротрон понятным языком от спецов)

https://www.inp.nsk.su/novostipresse/34958-izgotovleny-impulsnye-magnity-otvechayushchie-za-vyvod-puchka-na-orbitu-v-bustere-sinkhrotrone-skif

(фоточка с сайта СКИФа)
#зоопарк_одобряет #дорогая_редакция

Одна из самых страшных проблем в медицине - резистентность бактерий к антибиотикам: можно очень долго кормить поцыэнта таблетками (или делать ему уколы), но толку с этого не будет. Поэтому уже не один год ученые ищут вещества, которые помогали бы бороться с микробами и хотя бы дать время, чтобы былые антибиотики смогли восстановить свою мощь (тут достаточно просто долго подождать). С другой стороны, если это вкалывать в вену, то такие вещества должны быть более или менее безопасными для элементов крови.

В этом отношении хитозан – поли(аминосахарид), получаемыценный из хитина панциря краба/креветки/криля - весьма хорош. Это безопасный (GRAS), биосовместимый и биоразлагаемый полуприродный полисахарид, обладающий широким спектром неспецифической антимикробной активности, поэтому его и используют для разработки фармкомпозиций.

Вообще хитозановые композиции, взаимодействуя с цельной кровью, вызывают ее свертывание за счет агрегации эритроцитов (и не только). Механизм этого явления очень сложен и окончательно не определен, но есть версия, что гемостатическое и гемолитическое действие хитозана основано на электростатическом взаимодействии аминогрупп хитозана с поверхностными мембранами клеток крови, содержащими отрицательно заряженные карбоксильные группы гликопротеинов. Тем не менее, публикации на эту тему так и не проясняют, как уменьшить взаимодействие эритроцитов с хитозаном и его производными. Также нет определенности в выборе хитозана с физико-химическими характеристиками, нужными для его совместимости с эритроцитами.

Свежая работа коллег из ИНЭОС #РАН @ineosras (Москва), Воронежского госуниверситета @vsumain и ИБХФ РАН @ibcp_ras_news описывает вариант, как решить эту проблему. Реацетилирование и комплексообразование с фосфатными противоионами в буфере помогает снизить влияние олигохитозана на жизнеспособность эритроцитов, снижает количество необратимо трансформированных эритроцитов и их гемолиз, что повышает их совместимость с клетками крови.

Статья вышла в журнале ACS Applied Bio Materials (IF 4.5)

https://pubs.acs.org/doi/10.1021/acsabm.4c00996
#зоопарк_одобряет #дорогая_редакция

В процессе нефтедобычи образуются побочные соединения, в том числе сероводород - газ мало того, что вонючий, так еще и ядовитый и вызывающий коррозию. Чтобы избавиться от него, используют разные варианты, чаще всего - метод Клауса, когда сероводород окисляется до элементарной серы и воды.
Но ищут и альтернативные пути - например, с получением водорода, который сам по себе можно использовать как топливо. Для такого процесса нужны катализаторы, которые бы работали в нужном диапазоне температуры и с поверхности которых можно было бы удалять серу. Один из вариантов - сульфиды металлов.
В свежей работе ученых из ИБХФ #РАН @ibcp_ras_news (Москва), сделанной совместно с коллегами из исследовательского центра Aramco, описано теоретическое исследование кристалла CoMo2S4 как катализатора разложения сероводорода при помощи компьютерного моделирования. Показано, что разные его поверхности будут вести себя не одинаково (анизотропия предсказуемо имеет место), причем и в самом катализе, и в смысле того, как от кристалла отваливается образующаяся твердая сера.

Статья опубликована в Applied Surface Science (IF = 6.3)

https://www.sciencedirect.com/science/article/abs/pii/S0169433225004003
#зоопарк_одобряет #дорогая_редакция

Магнитокалорические материалы - это такие замечательные штуки, способные менять температуру под действием приложенного магнитного поля. По сути - еще один вариант охлаждения, причем в тех условиях, когда привычные пути невозможны или неудобны, поэтому неудивительно, что материаловеды изучают эту тему очень пристально.

Свежие интересные работы коллектива из МИСИС @nust_misis, Дагестанского ФИЦ РАН (Махачкала - как мы не раз писали, там еще с советских времен есть отличный физический центр*) и ИТЭБ #РАН (Пущино) показали, как такие материалы можно использовать и для биомедицинских задач. Регулируя температуру магнитным полем, можно управлять свойствами термочувствительного полимера поли (N-изопропилакриламида) (PNIPAM) - на его основе сделали смарт-композит, содержащий антибиотик (он же цитостатик) доксорубицин. Фишка же здесь в том, что высвобождение лекарства происходит под действием поля, то есть ровно там, где надо и когда надо, причем неинвазивно. Поле нужно, кстати, до 3 Тл - это легко достижимо на серийном медицинском оборудовании.

Результаты экспериментов опубликованы в ACS Applied Engineering Materials, а теоретических расчетов - в Journal of Composites Science.

*Кстати, вот наше старое интервью с одним из авторов - Каримом Амировым, материаловедом из "аула профессоров", как называют дагестанский Чох.
#зоопарк_одобряет #дорогая_редакция

Известно, что наши геномы по большей части различаются однонуклеотидными вариантами, и в среднем геном любого человека содержит около 4-5 миллионов таких замен, отличающих его от некоего универсального референса. Конечно, далеко не все эти варианты функциональны, и нам очень хочется уметь находить среди них биологически значимые.

Стандартный для этого подход - полногеномный поиск ассоциаций со всевозможными фенотипами, требующий сотни и тысячи образцов. Но даже если мы набрали достаточную статистику и получили значимо ассоциированные варианты, большинство из них локализуется в некодирующих областях генома и порождает больше вопросов, чем ответов. Как все-таки эти замены связаны с фенотипом?

Именно для таких случаев спасением становится аллель-специфичный анализ, заключающийся в сравнении сигнала любого высокопроизводительного эксперимента, будь то секвенирование РНК, открытого хроматина или покрытых белками участков ДНК, между альтернативными аллелями гетерозиготных вариантов. Так, если на одной из гомологичных хромосом замена нуклеотида приводит к изменению доступности данного участка хроматина, значит, эта позиция важна, и аллель-специфичный анализ на это укажет. При этом подобный анализ сразу указывает на функциональность варианта (меняет ли он экспрессию, связывание факторов транскрипции и так далее) и не требует сотен образцов, достаточно нескольких реплик.

Биологи из Института белка #РАН (Пущино), ИОГен РАН (Москва), с ФББ МГУ и из университета Сириус разработали и протестировали новый инструмент MIXALIME, позволяющий любому исследователю, имеющему на руках результаты высокопроизводительных экспериментов, провести аллель-специфичный анализ с использованием наиболее подходящей статистической модели, учитывающей овердисперсию данных и плоидность образцов.

Более того, они сами проанализировали данные более 5 тысяч экспериментов по доступности хроматина в разных тканях и клеточных линиях человека, чтобы составить базу данных UDACHA, включившей более 100 тысяч аллель-специфичных вариантов.

Результаты опубликованы в Nature Communications (IF = 14.7)

https://www.nature.com/articles/s41467-024-55513-2