Зоопарк из слоновой кости
22.3K subscribers
1.21K photos
67 videos
23 files
3.75K links
Руководство по выживанию в науке, полезные советы начинающим, новости из научной жизни и просто околонаучный треп
Версия VK: https://vk.com/ivory_zoo

Вопросы? Предложения? @ivory_zoo
加入频道
#зоопарк_одобряет #дорогая_редакция

Классический вариант фотодинамической терапии опухолей (ФДТ) - когда используют препараты-фотосенсибилизаторы и облучение светом, то есть видимую область спектра. В результате активации таких агентов в опухолевых тканях образуются различные активные формы кислорода (АФК), подавляющие рост смертоносных клеток. Проблема в том, что современные ФДТ-препараты не очень селективны, в результате чего страдает эффективность лечения и появляются неприятные побочные эффекты.

Большой коллектив химиков и биофизиков из ННГУ @lobachevsky_university совместно с коллегами из ИХР РАН @isc_ras (Иваново), ИГХТУ, ИОХ РАН @ziocras и Uppsala University разработал дизайн нового фотосенсибилизатора, выделяемого из хлорофилла-А и объединенного со специфической векторной молекулой для точной доставки к опухолевым тканям.

Благодаря использованию современных подходов медицинской химии ученым удалось точно "настроить" фотосенсибилизаторы, сделав их максимально эффективными против EGFR-экспрессирующих опухолей (очень распространенный вариант). Более того, предложен удобный синтетический путь, позволяющий быстро синтезировать новые агенты.

Выраженный противоопухолевый эффект в наномолярном диапазоне концентраций в совокупности с высокой селективностью показан как на клеточных, так и на животных моделях. Вообще, надо сказать, настолько мощная фотодинамическая активность обычно не свойственна классическим хлориновым фотосенсибилизаторам. При этом анализ основных биохимических параметров у животных после введения новых препаратов ФДТ свидетельствует об их безопасности.

Статья опубликована в Journal of Medicinal Chemistry (IF=7.3) - и эта работа тоже поддержана РНФ.

https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c02643
#зоопарк_одобряет #дорогая_редакция

Чтобы лечить эпилепсию, сейчас используют медикаменты и хирургию. Увы, около 30% пациентов не реагируют на лечение противосудорожными препаратами, а возможности хирургического лечения ограничены (удалить всю зону возникновения приступов часто не удается). Перспективный путь - нейростимуляция, заключающаяся в использовании токов в мозге для изменения и остановки патологической нейрональной активности. Разработка новых вариантов стимуляции и носимых устройств (например, нейроинтерфейсов) для остановки и подавления эпилептиформной нейрональной активности - очень важная задача.

В последнее время исследования, связанные с разработкой нейроинтерфейсов, сосредоточены на использовании мемристивных устройств – элементов, способных имитировать функции нейронов и синапсов благодаря возможности аналогового изменения электрического сопротивления. Этот путь в перспективе ведет не только к схемотехническому упрощению и уменьшению размеров и стоимости конечного устройства, но и к увеличению энергоэффективности и производительности.
Именно такими исследованиями – изучением отклика мемристивного устройства на основе диоксида циркония на эпилептиформную нейрональную активность – занимаются нижегородские исследователи (ННГУ @lobachevsky_university).
Вызвав экспериментально эпилептиформную нейрональную активность и зарегистрировав ее in vitro (в срезах) гиппокампа лабораторных мышей, такой сигнал направили на мемристивное устройство. Последнее проявило синаптическую пластичность в ответ на биологические эпилептиформные импульсы. Результаты говорят о возможности использования мемристоров (искусственных синапсов) в качестве элементов нейропротезов.

Работа опубликована в журнале Chaos, Solitons & Fractals (IF = 5.3)

https://www.sciencedirect.com/science/article/abs/pii/S096007792401511X
#фейспалм #асы_пиара #дорогая_редакция

Ждём пополнения раздела "сведения об образовательной организации" натальными картами ректората
#фейспалм #асы_пиара #дорогая_редакция

МГСУ решил оживить официальный канал, запостив самые ходовые методы списывания, их плюсы и минусы.

В продолжение дискуссии к прошлому посту вангуем реакцию "ачотакова, это просто способ привлечения подписоты", "а чо тут крамольного, студенты же это и так знают", "ну так все равно списывают, чего тут стесняться" и тому подобное.

Трудно поспорить - студенты иногда списывают (не все, но многие). А еще студенты, например, дрочат (опять же, иногда, и, вероятно, их доля будет куда выше, в соответствии с заветами нобелевского лауреата И. Бродского), и это явно полезнее, чем списывание. Это повод для поста в официальном вузовском канале с описанием разных вариантов мастурбации, их плюсов и минусов? Нуачо, тут вирусный пиар уж точно гарантирован - лайки, репосты, статьи в СМИ, депутатские запросы, М-рейтинг, опять же, подрастет

https://yangx.top/niumgsuofficial/12111
#зоопарк_одобряет #дорогая_редакция

Есть такие бактериальные белки - инкапсулины. Название уже намекает - они самопроизвольно собираются в капсулы, по типу капсида.

Если такие белки генетически закодировать и засунуть в эукариотическую клетку, то они будут там синтезироваться и самопроизвольно собираться в эти капсулы. Один из инкапсулинов из бактерии Quasibacillus thermotolerans (Qt) также несёт белок, который умеет не просто накачивать внутрь такой капсулы железо, но и минерализовать его, превращая в магнитные наночастицы. В результате становится управлять возможным эукариотическими клетками с помощью магнитного поля, просто-напросто двигая их туда или сюда. Об этом - свежая работа большого международного коллектива из Германии, США, Нидерландов и России (наши соотечественники - из МИСИС @nust_misis, Пироговки @daily_2med и НИИ ФХБ МГУ).

Статья вышла в Advanced Functional Materials (IF = 18.5). Кстати, эта работа тоже была поддержана РНФ, причем международным грантом

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202418013
#дорогая_редакция #зоопарк_одобряет

Из растительной биомассы можно получить целый ряд соединений фурана (например, фурфурол) - ценное сырье для химпрома, которое можно превращать в нужные продукты в сравнительно небольшое число стадий. Часто один из первых этапов - разложение сильной кислотой, и здесь важно грамотно подобрать растворитель, потому что и выход, и состав продуктов от этого зависят напрямую, а для промышленности это многие и многие тонны.
Свежая работа химиков школы Ананикова @ananikovlab - ТулГУ @tulauniversity и ИОХ #РАН @ziocras - большое исследование того, насколько разные производные фурана стабильны в широком диапазоне условий, по сути, своего рода набор правил выбора растворителей для лабораторных синтезов и, в перспективе, не только.

Статья вышла в ChemSusChem (IF = 7.5) и попала на обложку свежего выпуска журнала
#дорогая_редакция

Смотрите и не говорите, что не видели - так выглядит упаковка для сыпучих реактивов из Китая.

Интересно, нужно ли ее декларировать как товар двойного назначения?
Хотя можно же просто написать "для подготовки грантового отчета", и это тоже будет правда
#зоопарк_одобряет #дорогая_редакция

Гомологичная рекомбинация - это безошибочный способ устранения двуцепочечных разрывов в геноме. В случае нарушения этого механизма (состояние, называемое дефицитом гомологичной рекомбинации - HRD), например, из-за мутаций в генах, кодирующих соответствующие белки, в геноме накапливается большое число крупных перестроек.
В начале 2000х годов было показано, что опухоли с HRD хорошо и прицельно убиваются соединениями-ингибиторами фермента PARP1, который участвует во всех механизмах репарации ДНК. И тогда встал вопрос о том, как выявлять опухоли с таким нарушением. Изначально для этого выявляли мутации в двух генах, которые регулируют многие процессы при гомологичной рекомбинации - BRCA1 и BRCA2, но стало понятно, что это только около 20% всех пациентов, которым эти препараты помогают. Тогда нашли, что в клетках с HRD есть особые паттерны крупных перестроек, по которым можно достаточно надежно предсказывать, будет ли препарат эффективен.

Свежий обзор коллег из ИХБФМ СО #РАН (Новосибирск) - о выявлении этих паттернов, объяснении механизмов их возникновения, проблемах у текущих подходов и возможных новых направлениях развития этих подходов.

Статья опубликована в Cancer and Metastasis Reviews (IF = 7.7)

https://link.springer.com/article/10.1007/s10555-024-10238-y
#зоопарк_одобряет #дорогая_редакция

Новые люминесцентные метки против подделок: ФИАНовцы @lpi_ras совместно с коллегами из Института спектроскопии #РАН предложили оригинальный подход, основанный на различии в скорости фотовыцветания люминесцентных меток. Они получили серию комплексов Eu3+ с галогенированными дикетонами, обладающих идентичным спектром люминесценции, но различной скоростью фотовыцветания при УФ-
облучении. На их основе была создана печатная защитная метка, невидимая при обычном освещении, но и люминесцирующая в УФ-лучах. При малой мощности излучения метка люминесцирует равномерно, однако при повышении мощности часть метки быстро выцветает, и становится видна зашифрованная информация.
Практическое применение тут вполне очевидно: контроль качества товаров, требующих защиты от света, а также новый подход к идентификации подлинности документов и ценных бумаг.

Статья опубликована в журнале Materials Chemistry Frontiers (IF 6.0)

https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00933a
#зоопарк_одобряет #дорогая_редакция

Всякие разные металл-графеновые наночастицы активно изучаются материаловедами, поскольку там часто возникают необычные свойства (типа аномалий теплопроводности, что может быть полезно для теплообменников в наноэлектронике).

В совместной работе экспериментаторов из ОИВТ РАН и "модельеров" из Уфы (ИПСМ РАН, группа проф. Баимовой @budni_professora) изучен синтез композитных частиц графен/медь достаточно простым плазменно-химическим методом.

Полученные в плазме частицы выглядят как наночастицы меди, завернутые в чешуйки графена, однако из эксперимента не удавалось достоверно установить, от чего зависит структура разных композитных частиц и как именно они формируются. С помощью моделирования было показано, что наночастицы меди, двигаясь с разной скоростью в потоке плазмы, сталкиваются с чешуйками графена, и конечная структура композитной частицы зависит от скорости движения. Наночастицы меди могут прилипать к графену, отталкиваться от него или проходить сквозь графеновую чешуйку, разрушая ковалентные связи. Во всех трех случаях структура частиц будет отличаться, создавая многообразие композитных наночастиц в полученном порошке (и, соответственно, влиять на его свойства).

Статья опубликована в Applied Surface Science (IF = 6.3)

https://www.sciencedirect.com/science/article/abs/pii/S0169433225002375