Forwarded from Machinelearning
V-Triune - фреймворк с новым методом обучения VL-моделей, через единый алгоритм подкрепления.
В отличие от традиционных методов трейна VLM, сосредоточенных на отдельных задачах вроде решения математических задач или обнаружения объектов, V-Triune обучает модели одновременно работать с рассуждениями и восприятием. RL в V-Triune действует как механизм «настройки» уже заложенных в модель возможностей, а не добавляет новые навыки.
Это достигается за счет 3 ключевых компонентов: форматирования данных на уровне выборок, вычисления наград через специализированные верификаторы и мониторинга метрик по источникам данных.
Например, динамическая награда IoU адаптирует пороги точности для обнаружения объектов — сначала стимулируя базовое понимание, а затем требуя высокой точности.
Тестирование проводилось на бенчмарке MEGA-Bench из440 задач — от анализа графиков до OCR. Экспериментальные модели Orsta (7B и 32B параметров), обученные с V-Triune, показали прирост производительности до +14,1% по сравнению с базовыми версиями.
На задачах восприятия (обнаружение объектов в COCO), улучшения достигли +12,17% для mAP@50. Для математических задач (MathVista) результаты выросли на 5%, а в OCR — на 1-2%. При этом система стабильно работала даже при обучении на смешанных данных, что косвенно подтвердило ее универсальность.
Minimax открыли (но пока не загрузили его в репозиторий) код V-Triune и модели Orsta:
⚠️ В версии 0321 попытки совместного обновления визуального и языкового модулей приводили к взрыву градиентов, поэтому ViT пришлось заморозить. В 0326, благодаря исправлениям в архитектуре, RL-тренинг стал стабильнее. 0326 рекомендуется для задач, где критична точность и надежность форматов ответов.
@ai_machinelearning_big_data
#AI #ML #VLM #RL #Framework #MiniMax
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2🔥1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
По словам Павла Дурова, его платформа и компания Илона Маска xAI заключили годовое соглашение. xAI заплатит Telegram $300 млн. за интеграцию чат-бота Grok прямо в мессенджер. Помимо этого, Telegram также будет получать 50% от выручки с подписок на Grok, которые будут продаваться внутри платформы.
Илон Маск позже написал в X: "Контракт еще не подписан". Однако он не стал уточнять детали, оставив вопрос открытым. Пока что официальная позиция Telegram – сделка есть, и она принесет пользователям лучший ИИ на рынке уже этим летом.
Новость пришла на фоне важных для Telegram событий: сервис преодолел отметку в 1 млрд. активных пользователей в месяц в этом году и разместил облигации на $1.5 млрд.
Pavel Durov
Anthropic сняла ограничения с функции веб-поиска в Claude: теперь даже бесплатные пользователи смогут получать ответы на основе актуальных данных из интернета. Ранее, доступ к этой опции, которая анализирует информацию в реальном времени, был эксклюзивом для платных подписчиков. Это изменение позволит чаще обновлять знания модели и точнее решать задачи.
Параллельно стартовало тестирование голосового режима в мобильном приложении. Пользователи могут общаться с Claude в формате диалога, выбирая из 5 вариантов голоса и получать краткие текстовые сводки прошлых бесед. По умолчанию для диалогов задействована модель Sonnet 4.
support.anthropic
OpenAI активно прорабатывает функцию "Вход через ChatGPT", позволяющую пользователям авторизовываться в сторонних приложениях через свои аккаунты ChatGPT. Компания уже собирает заявки от разработчиков, желающих интегрировать эту опцию в свои сервисы. Пилотный запуск для тестирования уже доступен в Codex CLI — инструменте для работы с ИИ в терминале. Разработчики могут подключить ChatGPT Free, Plus или Pro к своим API-аккаунтам, получая бонусные кредиты ($5 для Plus и $50 для Pro).
Это стратегический ход для расширения экосистемы. С 600 млн активных пользователей ежемесячно, "Вход через ChatGPT" может стать ключевым элементом, помогая OpenAI конкурировать с Google и Apple в сфере единого входа и онлайн-сервисов. Точные сроки публичного релиза пока неизвестны.
techcrunch
К своему юбилею Google Photos получает мощное обновление, сфокусированное на ИИ-редактировании. Сервис, где ежемесячно редактируют 210 млн. снимков, теперь предлагает умные подсказки по улучшению кадра одним нажатием. Можно тыкнуть пальцем или обвести область — нейросеть предложит подходящий инструмент. Главные новинки — "Reimagine" и "Auto Frame", ранее доступные только на Pixel 9.
"Reimagine" меняет выбранный объект или добавляет новый по текстовому запросу через генеративный ИИ. "Auto Frame" автоматически кадрирует фото, а нейросеть дорисовывает фон. Плюс Google добавит QR-коды для альбомов, чтобы удобно собирать фото с мероприятий. Правда, обновленный редактор появится на Android в июне, а владельцам iPhone ждать до конца года.
arstechnica
С 28 мая стартовал прием заявок на ежегодную премию Yandex ML Prize 2025. Эта награда — реальное признание и поддержка для тех, кто растит новые кадры ML в России. Премия существует с 2019 года как память об Илье Сегаловиче, и за шесть лет её получили уже 60 выдающихся педагогов и руководителей.
Податься могут вузовские преподаватели, ученые из исследовательских центров и руководители образовательных программ в области Сomputer Science. Победителей ждут денежные призы и полезные гранты на Yandex Cloud, которые точно пригодится в работе: делать новые курсы, организовывать хакатоны и проводить исследования вместе со студентами.
Заявки принимают до 22 июня. Само награждение, как обычно, пройдет осенью.
habr.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4❤2👎1🥰1
Forwarded from Machinelearning
Alibaba Group разработали HumanOmniV2, модель на базе
Qwen2.5-Omni-7B-thinker
, которая получила навык осмысления визуального контекста за счет изменения самого процесса мышления модели. Ее научили следовать строгому формату: сначала описать контекст, потом рассуждать и только затем давать ответ.Теперь, прежде чем отвечать на вопрос, модель генерирует подробное описание сцены в теге
<context>
. На этом этапе она фиксирует, кто что делает, какой фон, какие звуки слышны. Только после этого в теге <think>
она строит логическую цепочку рассуждений, связывая вопрос с собранным контекстом. И лишь в конце выдает результат в теге <answer>
.Чтобы этот подход работал, его усилили системой вознаграждений на основе RL. За точность и правильный формат модель получает стандартные награды, но были введены и две новых:
Для оценки HumanOmniV2 создали бенчмарк IntentBench (633 видео, 2689 вопросов) на основе Social-IQ 2.0, EMER и MDPE.
Его фишка в том, что вопросы требуют одновременного анализа: видеоряда (жесты, микровыражения), диалогов (тон, смысл реплик) и социального контекста (ирония, обман, скрытые намерения).
Тестовая модель обошла открытые аналоги на 3 бенчмарках:
@ai_machinelearning_big_data
#AI #ML #MMLM #HumanOmniV2 #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤6
Forwarded from Machinelearning
OpenReasoning-Nemotron - набор LLM на архитектуре Qwen 2.5 и дистиллированных из DeepSeek-R1-0528 ( 671 млрд. параметров):
Семейство было обучено на 5 млн. примеров рассуждений в математике, естественных науках и программировании.
Модели показали достойные результаты pass@1 на бенчах GPQA, MMLU-PRO, AIME, HMMT и LiveCodeBench - без использования RL.
Старшая модель, 32B, выбила 96,7% по HMMT с декодированием GenSelect.
@ai_machinelearning_big_data
#AI #ML #LLM #Reasoning #Nemotron #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍3🔥2🥰1😁1
Forwarded from Machinelearning
Hierarchical Reasoning Model, (HRM) - рекуррентная архитектура, которая черпает вдохновение в принципах работы человеческого мозга. В ее основе лежат 2 взаимозависимых рекуррентных модуля:
Эта структура дает модели достигать вычислительной глубины, необходимой для сложных рассуждений, при этом сохраняя стабильность и эффективность во время обучения, чего так не хватает стандартным трансформерам.
Процесс кардинально отличается от того, что происходит в обычных рекуррентных сетях, которые склонны к преждевременной сходимости, когда их скрытое состояние быстро стабилизируется, и дальнейшие вычисления практически прекращаются. В HRM все иначе:
Таким образом, вычислительный путь низкоуровневого модуля перезапускается, направляя его к новой точке локального равновесия. Механизм не дает системе застрять и позволяет ей последовательно выполнять множество различных, но взаимосвязанных этапов решения, выстраивая длинные логические цепочки.
Тестовая модель HRM с 27 млн. параметров, обученная всего на 1000 примерах без какого-либо претрейна или CoT-пар, показала неожиданно высокие результаты .
На задачах, требующих глубокого поиска и перебора вариантов ( Sudoku-Extreme ) и поиск оптимального пути ( Maze 30x30 ), HRM достигла почти идеальной точности, а вот CoT-методы полностью провалились с результатом 0%.
На бенчмарке ARC-AGI-1, HRM показывает точность в 40.3%. Для сравнения, o3-mini-high показала 34.5%, а Claude 3.7 с контекстом 8K - 21.2%.
@ai_machinelearning_big_data
#AI #ML #HRM #SapientInc
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8🔥6🥰2👍1🤔1