Forwarded from Machinelearning
Qwen2-VL - это новая версия VLMs, основанная на Qwen2 в семействе моделей Qwen. По сравнению предыдущим поколением, Qwen2-VL обладает возможностями:
Набор Qwen2-VL состоит из трех основных моделей, две из которых публикуются в отrрытом доступе. Модель Qwen2-VL-72B доступна только по API:
и их квантованные версии в форматах AWQ и GPTQ в разрядностях Int8 и Int4.
Архитектура моделей. как и в прошлом поколении основана на ViT 600M и LLM Qwen2, но с добавлением двух ключевых модификаций:
⚠️ Ограничения в возможностях и слабые стороны поколения состоят в том, что модели не умеют извлекать звук из видео, а их знания актуальны на июнь 2023 года.
Кроме того, они не могут гарантировать полную точность при обработке сложных инструкций или сценариев. Модели относительно слабы в задачах, связанных со счетом, распознаванием символов и трехмерным пространственным восприятием.
@ai_machinelearning_big_data
#AI #Qwen #ML #GPTQ #VLM #AWQ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍4🔥2
Forwarded from Machinelearning
DeepSeek-VL2 - усовершенствованная серия VLM c Mixture-of-Experts (MoE), которая значительно превосходит DeepSeek-VL.
Модели семейства ориентированы на задачи визуальных ответов на вопросы, оптического распознавания символов, понимания документов/таблиц/схем и визуального обоснования.
DeepSeek-VL2 включает три основных модуля:
DeepSeek-VL2 обучается в три этапа: на первом этапе обучается MLP-соединитель, который связывает визуальный энкодер с языковой моделью, затем модель обучается на датасете из текста, изображений, аннотаций, QA и данных OCR и, в конце процесса, дообучается с учителем для улучшения ее способности понимать инструкции и вести диалог.
Модельная серия состоит из 3 вариантов c контекстом 4096:
DeepSeek-VL2 была протестирована на задачах DocVQA, ChartQA, InfoVQA, TextVQA, MMBench и показала лучшие результаты по сравнению с другими моделями MoE.
DeepSeek-VL2 эффективно использует архитектуру MoE и превосходит другие модели с аналогичным количеством активных параметров.
@ai_machinelearning_big_data
#AI #ML #VLM #DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤4🔥2
Forwarded from Machinelearning
QVQ-72B-Preview - экспериментальная VLM на основе Qwen2-VL-72B , разработанная Qwen, со способностями к аналитическому мышлению и новым уровнем когнитивных навыков.
Проведенная в Qwen оценка QVQ-72B-Preview на бенчмарках MMMU, MathVista, MathVision и OlympiadBench показала результат 70.3 на MMMU, 71.4 на MathVista, 35.9 в MathVision и 20.4 на наборе OlympiadBench, подчеркнув ее способность к комплексному пониманию и рассуждению в мультидисциплинарных задачах.
⚠️ Несмотря на высокие результаты, QVQ-72B-Preview - предварительная версия модели, которая имеет ограничения:
Неофициальные квантованные версии QVQ-72B-Preview в формате GGUF с диапазоном разрядностей от 1-bit (23.7GB) до 8-bit (77.26GB) и MLX-версии от mlx community в разрядностях от 4-bit до 16-bit.
@ai_machinelearning_big_data
#AI #ML #VLM #Qwen #Reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2😁1
Forwarded from Machinelearning
Moonshot AI опубликовала веса Kimi-VL — открытой VLM, которая объединяет обработку текста, изображений и видео. Благодаря архитектуре MoE модель активирует всего 2.8 млрд. параметров в языковом декодере, обеспечивая скорость, сопоставимую с компактными аналогами, и результативность флагманских решений.
Главное преимущество Kimi-VL — способность анализировать длинные контексты до 128 тыс. токенов, что делает её идеальной для работы с объемными документами, длинными видео или сложными мультимедийными задачами.
Основу модели составляет визуальный энкодер MoonViT, оптимизированный для нативной обработки изображений любого разрешения без необходимости разбивать их на части. Это позволяет точно распознавать текст, графики или UI-интерфейсы даже в высокодетализированных скриншотах.
Например, на бенчмарке InfoVQA модель показывает точность 83.2%, обходя даже GPT-4o. В задачах OCR Kimi-VL достигает 86.7% на OCRBench, что ставит её в ряд лучших в индустрии.
Разработчики также представили Kimi-VL-Thinking — версию с расширенными возможностями CoT. Благодаря использованным RL и длительному CoT-тюнингу она демонстрирует впечатляющие результаты в математических и академических задачах: на MathVista точность составила 71.3%, а на MMMU — до 61.7%, что лучше, чем у Gemma-3-12B-IT.
В тестах Kimi-VL превосходит конкурентов в работе с агентами: на OSWorld её результат 8.22% выше, чем у GPT-4o (5.03%), а на WindowsAgentArena — 10.4%. Для длинных видео модель набирает 64.5% на LongVideoBench, подтверждая способность анализировать часовые записи без потери ключевых деталей.
Модели доступны на Hugging Face в двух вариантах:
@ai_machinelearning_big_data
#AI #ML #VLM #KimiAI #MoonShotAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2
Forwarded from Machinelearning
V-Triune - фреймворк с новым методом обучения VL-моделей, через единый алгоритм подкрепления.
В отличие от традиционных методов трейна VLM, сосредоточенных на отдельных задачах вроде решения математических задач или обнаружения объектов, V-Triune обучает модели одновременно работать с рассуждениями и восприятием. RL в V-Triune действует как механизм «настройки» уже заложенных в модель возможностей, а не добавляет новые навыки.
Это достигается за счет 3 ключевых компонентов: форматирования данных на уровне выборок, вычисления наград через специализированные верификаторы и мониторинга метрик по источникам данных.
Например, динамическая награда IoU адаптирует пороги точности для обнаружения объектов — сначала стимулируя базовое понимание, а затем требуя высокой точности.
Тестирование проводилось на бенчмарке MEGA-Bench из440 задач — от анализа графиков до OCR. Экспериментальные модели Orsta (7B и 32B параметров), обученные с V-Triune, показали прирост производительности до +14,1% по сравнению с базовыми версиями.
На задачах восприятия (обнаружение объектов в COCO), улучшения достигли +12,17% для mAP@50. Для математических задач (MathVista) результаты выросли на 5%, а в OCR — на 1-2%. При этом система стабильно работала даже при обучении на смешанных данных, что косвенно подтвердило ее универсальность.
Minimax открыли (но пока не загрузили его в репозиторий) код V-Triune и модели Orsta:
⚠️ В версии 0321 попытки совместного обновления визуального и языкового модулей приводили к взрыву градиентов, поэтому ViT пришлось заморозить. В 0326, благодаря исправлениям в архитектуре, RL-тренинг стал стабильнее. 0326 рекомендуется для задач, где критична точность и надежность форматов ответов.
@ai_machinelearning_big_data
#AI #ML #VLM #RL #Framework #MiniMax
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2🔥1