Forwarded from Machinelearning
Релиз R1 и новости об инвестировании в развитие отрасли, вызвали падение акций американских ИТ-гигантов на бирже NASDAQ.
Но помимо R1 в этом месяце разработчики из Китая выпустили еще очень много интересных моделей 🔥 Китай набирает очень серьезные обороты,
Давайте посмотрим на список самых ярких релизов из Поднебесной за январь:
LLM:
✨ InternLM3-8B-Instruct
✨ MiniMax-Text-01
✨ RWKV-7 RNN + трансформер 👀
✨ Собственно сам DeepSeek-R1
✨ Baichuan-M1-14B медицинский LLM 🩺
✨ Qwen2.5-Math-PRM от Alibaba
✨ Qwen2.5 -1M
Модели кодинга:
✨ Tare от BytedanceTalk
TTS модели синтеза и генерации речи:
✨ T2A-01-HD от MiniMax AI
✨ LLaSA
МЛЛМ:
✨ Kimi k1.5 от Moonshot AI
✨ MiniCPM-o-2_6 от OpenBMB
✨ Sa2VA-4B от ByteDanceOSS
✨ VideoLLaMA 3 от Alibaba DAMO
✨ LLaVA-Mini от Китайской академии наук
✨Hunyuan-7B от TXhunyuan
✨ Hunyuan 3D 2.0
ИИ-агенты:
✨ UI-TARS от ByteDanceOSS
✨ GLM-PC
Датасеты:
✨ Fineweb-Edu-Chinese-V2.1
✨ Multimodal_textbook от Alibaba
✨ MME-Finance от Hithink AI
✨ GameFactory от KwaiVGI
📌 Полный список Релизов
@ai_machinelearning_big_data
#ai #ml #digest #china #deepseek #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👍6❤3🥰3
Forwarded from Machinelearning
Alibaba Group разработали HumanOmniV2, модель на базе
Qwen2.5-Omni-7B-thinker
, которая получила навык осмысления визуального контекста за счет изменения самого процесса мышления модели. Ее научили следовать строгому формату: сначала описать контекст, потом рассуждать и только затем давать ответ.Теперь, прежде чем отвечать на вопрос, модель генерирует подробное описание сцены в теге
<context>
. На этом этапе она фиксирует, кто что делает, какой фон, какие звуки слышны. Только после этого в теге <think>
она строит логическую цепочку рассуждений, связывая вопрос с собранным контекстом. И лишь в конце выдает результат в теге <answer>
.Чтобы этот подход работал, его усилили системой вознаграждений на основе RL. За точность и правильный формат модель получает стандартные награды, но были введены и две новых:
Для оценки HumanOmniV2 создали бенчмарк IntentBench (633 видео, 2689 вопросов) на основе Social-IQ 2.0, EMER и MDPE.
Его фишка в том, что вопросы требуют одновременного анализа: видеоряда (жесты, микровыражения), диалогов (тон, смысл реплик) и социального контекста (ирония, обман, скрытые намерения).
Тестовая модель обошла открытые аналоги на 3 бенчмарках:
@ai_machinelearning_big_data
#AI #ML #MMLM #HumanOmniV2 #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤6