PRIME Intellect опубликовала INTELLECT-1 (Instruct + Base), первую языковую модель с 10 млрд. параметров, совместно обученную за 50 суток 30 участниками эксперимента по всему миру.
PRIME Intellect использовала собственную платформу PRIME, разработанную для решения главных проблем децентрализованного обучения: ненадежность сети и динамическое управление вычислительными узлами.
Платформа использовала сеть из 112 GPU H100 на 3 континентах и достигла коэффициента использования вычислений в 96% при оптимальных условиях.
Корпус обучения составлял на 1 трлн. токенов публичных датасетов с процентным соотношением: 55% fineweb-edu, 10% fineweb, 20% Stack V1, 10% dclm-baseline, 5% open-web-math.
INTELLECT-1 достигла точности 37,5% на тесте MMLU и 72,26% на HellaSwag и превзошла несколько других моделей с открытым исходным кодом в WinoGrande с результатом 65,82%.
Хотя эти показатели немного отстают от современных популярных моделей, результаты эксперимента - важнейший шаг к демократизации разработки ИИ и предотвращению консолидации возможностей ИИ в рамках нескольких организаций.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("PrimeIntellect/INTELLECT-1")
tokenizer = AutoTokenizer.from_pretrained("PrimeIntellect/INTELLECT-1")
input_text = "%prompt%"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output_text)
@ai_machinelearning_big_data
#AI #ML #LLM #Decentralizated
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥41👍18❤8😎4
SmolVLM - серия компактных VLM с 2 млрд. параметров, отличающихся высокой эффективностью использования памяти и могут быть развернуты на локальных устройствах с ограниченными ресурсами.
Архитектура SmolVLM основана на Idefics3, с несколькими отличиями:
Модель кодирует каждый патч изображения 384x384 в 81 токен, что позволяет ей обрабатывать тестовые запросы и изображения с использованием всего 1.2 тыс. токенов, в то время как Qwen2-VL использует 16 тыс. токенов. Это преимущество приводит к значительно более высокой скорости предварительной обработки (в 3,3-4,5 раза) и генерации (в 7,5-16 раз) по сравнению с Qwen2-VL.
Для самостоятельной тонкой настройки SmolVLM можно использовать transformers и TRL. Разработчиками представлен блокнот для файнтюна на VQAv2 с использованием LoRA, QLoRA или полной тонкой настройки. SmolVLM интегрирован с TRL для DPO через CLI.
⚠️ При batch sizes=4 и 8-битной загрузке QLoRA файнтюн потребляет около ~16 GB VRAM
@ai_machinelearning_big_data
#AI #ML #SmallVLM #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20❤10🔥7
OLMo 2 - серия открытых языковых моделей, созданная для развития науки о языковых моделях .
Модели OLMo 2 доступны в вариантах 7B и 13B параметров и обучены на массиве данных объемом 5 трлн. токенов. Они демонстрируют производительность, сопоставимую или превосходящую аналогичные по размеру полностью открытые модели на английских академических тестах.
Разработчики OLMo 2 уделили особое внимание стабильности обучения, используя методы RMSNorm, QK-Norm, Z-loss регуляризация и улучшенная инициализация.
Обучение проводилось в 2 этапа. На первом этапе модели обучались на датасете OLMo-Mix-1124 (3,9 трлн. токенов). На втором этапе использовался специально подобранный набор данных Dolmino-Mix-1124 (843 млрд. токенов), состоящий из веб-данных, материалов из академических источников, форумов вопросов и ответов, инструкций и математических задачников. Для объединения моделей, обученных на разных подмножествах данных, применялся метод "model souping".
Для оценки OLMo 2 была разработана система OLMES (Open Language Modeling Evaluation System) из 20 тестов для измерения способностей модели. OLMo 2 превзошел предыдущую версию OLMo 0424 по всем задачам и показал высокую эффективность по сравнению с другими открытыми моделями.
from transformers import AutoModelForCausalLM, AutoTokenizer
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-7B")
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-2-1124-7B")
message = ["Language modeling is "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
# optional verifying cuda
# inputs = {k: v.to('cuda') for k,v in inputs.items()}
# olmo = olmo.to('cuda')
response = olmo.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
@ai_machinelearning_big_data
#AI #ML #LLM #OLMo2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25❤9🔥7
AIMV2 – семейство моделей визуальных энкодеров, предварительно обученных с помощью мультимодальной авторегрессионной цели, которая восстанавливает фрагменты изображений и текстовые токены, что, в итоге, позволяет AIMV2 справляться с задачами распознавания изображений, локализации объектов и мультимодального понимания.
Архитектура AIMV2 основана на ViT и использует каузальный мультимодальный декодер, который сначала регрессирует фрагменты изображения, а затем декодирует текстовые токены авторегрессионно. Визуальный энкодер использует префиксное внимание, что позволяет использовать двунаправленное внимание во время вывода без дополнительной настройки.
Семейство AIMV2 обучалось на комбинации общедоступных (DFN-2B, COYO) и собственных (HQITP) датасетов, содержащих пары "изображение-текст" и синтетические аннотации, сгенерированные предварительно обученным инструментом.
Эксперименты после обучения показали, что AIMV2-3B достигает точности 89,5% на ImageNet с замороженным транком, что лучше, чем у генеративных методов MAE и AIM. AIMV2 превосходит CLIP и SigLIP в большинстве тестов на мультимодальное понимание.
Модель совместима с LiT для zero-shot распознавания и может быть настроена для обработки изображений с различными разрешениями и соотношениями сторон.
В отрытый доступ на HF опубликованы модели:
⚠️ ! Примеры инференса с JAX и MLX доступны в репозитории AIMv2
# Clone the repository
pip install 'git+https://github.com/apple/ml-aim.git#subdirectory=aim-v2'
# Example Using PyTorch
from PIL import Image
from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms
img = Image.open(...)
model = load_pretrained("aimv2-large-patch14-336", backend="torch")
transform = val_transforms(img_size=336)
inp = transform(img).unsqueeze(0)
features = model(inp)
@ai_machinelearning_big_data
#AI #ML #Vision #Apple #AIMv2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥8❤7
В ноябре Джефф Хэнкок, основатель Лаборатории социальных сетей Стэнфорда и эксперт по технологиям и дезинформации, представил заявление по делу в суде Миннесоты, оспаривающему закон штата 2023 года, криминализирующий использование дипфейков для влияния на выборы. В 12-страничном документе профессора в защиту закона содержалось 15 ссылок, 2 из которых не удалось найти: «Дипфейки и иллюзия подлинности: когнитивные процессы, лежащие в основе восприятия дезинформации» и «Влияние дипфейковых видео на политические взгляды и поведение» – ни по указанному цифровому идентификатору объекта, ни в архивах указанных журналов. Адвокат истцов назвал ссылки "галлюцинацией искусственного интеллекта" и потребовал исключить заявление Хэнкока из материалов дела.
stanforddaily.com
Стартап World Labs, основанный профессором в области ИИ Фэй-Фэй Ли, представил свою первую разработку: систему ИИ, которая может создавать интерактивные 3D-сцены на основе одной фотографии. В отличие от многих других систем, преобразующих фото в 3D, сцены World Labs интерактивны и модифицируемы и позволяют «войти в любое изображение и исследовать его в 3D».
Система визуализирует сцены в режиме реального времени и поддерживает управление камерой и настройку глубины резкости. Она также позволяет применять к сценам интерактивные эффекты и анимацию, например, изменять цвет объектов и динамически освещать фон. World Labs планирует выпустить свой первый продукт в 2025 году и ориентируется на разработчиков видеоигр и киностудии.
techcrunch.com
Компания The Browser Company, разработчик браузера Arc, представила Dia - новый веб-браузер, основанный на искусственном интеллекте. Dia будет запущен в начале 2025 года и предложит пользователям ИИ-функции: "напиши следующую строку", "дай мне идею" и "резюмируй вкладку".
Dia понимает контекст всего окна браузера, может копировать ссылки из открытых вкладок и вставлять их в электронное письмо по команде пользователя. В промо-видеоролике разработчики показали, как Dia находит документ по описанию и отправляет его по электронной почте. Разработчики уверяют, что Arc продолжит свое существование, несмотря на запуск нового продукта.
theverge.com
Гибридная модель рекомендаций HRS-IU-DL сочетает в себе методы коллаборативной фильтрации, контентной фильтрации и нейроколлаборативной фильтрации. Модель использует RNN для выявления последовательных паттернов в поведении пользователей и TF-IDF для анализа атрибутов товаров.
HRS-IU-DL справляется с проблемами традиционных рекомендательных систем - разреженность данных и холодный старт, предоставляя точные и релевантные рекомендации. Для обучения и тестирования модели использовался датасет Movielens 100k. Результаты тестов показали, что HRS-IU-DL превосходит базовые модели по метрикам RMSE, MAE, точности и полноте.
nature.com
Закон ЕС об ИИ, вступивший в силу 2 декабря 2024 года, классифицирует системы ИИ по уровням риска: неприемлемый, высокий, ограниченный и минимальный.
В большинстве случаев разработчикам систем ИИ ограниченного риска (например, чат-ботов) потребуется обеспечить прозрачность взаимодействия с пользователем и маркировать контент, созданный ИИ. Разработчикам моделей ИИ общего назначения (GPAI) необходимо предоставить подробное описание данных, использованных для обучения модели, и соблюдать законы ЕС об авторском праве, включая механизмы отказа от использования защищенных авторским правом материалов.
Hugging Face предлагает инструменты, помогающие подготовиться к соблюдению требований: Model Cards, Dataset Cards, Gradio watermarking и поддержку механизмов отказа.
huggingface.co
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍23❤8🔥3🥰1😁1
Tencent опубликовала в отрытый доступ модели с 13 млрд. параметров для генерации видео по текстовым промптам: HunyuanVideo и HunyuanVideo-PromptRewrite.
Архитектура HunyuanVideo простроена на пространственно-временном сжатии, которое позволяет обрабатывать видео и изображения в едином формате.
Входные текстовые запросы кодируются с помощью MLLM (комбинация CLIP and T5-XXL) и используются в качестве основы для генерации. Модель генерирует латент, который затем декодируется в изображения или видео с помощью 3D VAE.
HunyuanVideo-PromptRewrite - специальный файнтюн для адаптации и автоматического расширения пользовательских промптов к предпочтениям модели. В PromptRewrite 2 режима работы: Normal и Master:
HunyuanVideo оценивалась 60 экспертами на 1533 промптах в сравнении с топовыми T2V-моделями: Gen-3, Luma 1.6 и тремя лучшими китайскими коммерческими моделями.
Результаты оценки показали, что HunyuanVideo достигает общего уровня удовлетворенности, особенно выделяясь качеством движения объектов.
⚠️ Минимальный объем GPU - 60 GB для 720pX1280pX129f и 45 GB для 544pX960pX129f. Рекомендованный GPU - 80 GB.
# Clone repo:
git clone https://github.com/tencent/HunyuanVideo
cd HunyuanVideo
# Prepare conda environment
conda env create -f environment.yml
conda activate HunyuanVideo
# Install pip dependencies
python -m pip install -r requirements.txt
# Install flash attention v2
python -m pip install git+https://github.com/Dao-AILab/[email protected]
# Inference
python3 sample_video.py \
--video-size 720 \
--video-length 129 \
--infer-steps 50 \
--prompt "%prompt%" \
--flow-reverse \
--use-cpu-offload \
--save-path ./results
@ai_machinelearning_big_data
#AI #ML #Text2Video #Tencent #HunyuanVideo
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥25❤9👍5🎉2