Mini-Omni - open-source MMLM, которая умеет ввод-вывод речи в режиме реального времени. Она построена по предложенному в исследовании методу "Any Model Can Talk", который позволяет добавлять речевые возможности к существующим LLM с минимальными изменениями в их архитектуре.
Функциональные возможности модели:
Mini-Omni основана на LLM Qwen2-0.5B с трансформерной архитектурой, состоящей из 24 блоков и internal dimension 896.
Для кодирования речи используется Whisper-small encoder, а для распознавания и синтеза речи добавлены адаптеры ASR, связанные с двухслойной MLP, и ТТS, который добавляет 6 дополнительных трасформерных блоков к существующим у Qwen2.
Mini-Omni обучалась на датасетах Libritts, VCTK, Multilingual LibriSpeech, Open-Orca, Moss’s SFT, Alpaca-GPT4 и другие. Общий объем данных составил около 8000 часов речевых данных и 2 миллиона текстовых записей.
В бенчмарках Mini-Omn продемонстрировала отличные результаты в задачах распознавания речи, немного уступая Whisper-small и VITA.
# Create & activate venv
conda create -n omni python=3.10
conda activate omni
# Clone the Repository
git clone https://github.com/gpt-omni/mini-omni.git
cd mini-omni
# Install required packages
pip install -r requirements.txt
# start server
python3 server.py --ip '0.0.0.0' --port 60808
Запуск с Streamlit UI:
# run streamlit with PyAudio
pip install PyAudio==0.2.14
API_URL=http://0.0.0.0:60808/chat streamlit run webui/omni_streamlit.py
Запуск с Gradio UI:
API_URL=http://0.0.0.0:60808/chat python3 webui/omni_gradio.py
@ai_machinelearning_big_data
#AI #ML #MMLM #Speech2Speech #MiniOmni
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤27👍21🔥8
Mini-Omni - open-source MMLM, которая умеет ввод-вывод речи в режиме реального времени. Она построена по предложенному в исследовании методу "Any Model Can Talk", который позволяет добавлять речевые возможности к существующим LLM с минимальными изменениями в их архитектуре.
Функциональные возможности модели:
Mini-Omni основана на LLM Qwen2-0.5B с трансформерной архитектурой, состоящей из 24 блоков и internal dimension 896.
Для кодирования речи используется Whisper-small encoder, а для распознавания и синтеза речи добавлены адаптеры ASR, связанные с двухслойной MLP, и ТТS, который добавляет 6 дополнительных трасформерных блоков к существующим у Qwen2.
Mini-Omni обучалась на датасетах Libritts, VCTK, Multilingual LibriSpeech, Open-Orca, Moss’s SFT, Alpaca-GPT4 и другие. Общий объем данных составил около 8000 часов речевых данных и 2 миллиона текстовых записей.
В бенчмарках Mini-Omn продемонстрировала отличные результаты в задачах распознавания речи, немного уступая Whisper-small и VITA.
# Create & activate venv
conda create -n omni python=3.10
conda activate omni
# Clone the Repository
git clone https://github.com/gpt-omni/mini-omni.git
cd mini-omni
# Install required packages
pip install -r requirements.txt
# start server
python3 server.py --ip '0.0.0.0' --port 60808
Запуск с Streamlit UI:
# run streamlit with PyAudio
pip install PyAudio==0.2.14
API_URL=http://0.0.0.0:60808/chat streamlit run webui/omni_streamlit.py
Запуск с Gradio UI:
API_URL=http://0.0.0.0:60808/chat python3 webui/omni_gradio.py
@ai_machinelearning_big_data
#AI #ML #MMLM #Speech2Speech #MiniOmni
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥11❤8🆒1
LongLLaVA - мультимодальная модель, предназначена для разработки приложений, требующих понимания длинных видеороликов, изображений высокого разрешения и сложных мультимодальных сценариев.
В модели применяется гибридная архитектура из комбинации блоков Mamba и Transformer в соотношении 7:1. Для сжатия визуальных данных применяется метод 2D-пулинга, который снижает вычислительные затраты при сохранении производительности.
В процессе обучения применялся трехфазный метод: выравнивание по одному изображению, настройка инструкций по одному изображению и настройка инструкций по нескольким изображениям.
Экспериментальные результаты показали, что LongLLaVA превосходит другие модели с открытым исходным кодом по пониманию в длинном контексте, особенно в задачах поиска, подсчета и упорядочивания.
@ai_machinelearning_big_data
#AI #ML #MMLM #LongLLaVA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29❤5🔥4
Molmo (Multimodal Open Language Model) - это семейство VLM, разработанных в Институте искусственного интеллекта Аллена, для решения задач обработки изображений и текста - создание подробных описаний изображений и выполнение комплексных визуальных операций, например:
Обучение семейства выполнялось в 2 этапа: предварительное обучение на наборе данных PixMo-Cap для генерации аннотаций к изображениям и этап SFT с использованием комбинации академических наборов данных и наборов данных PixMo (PixMo-AskModelAnything, PixMo-Points, PixMo-CapQA, PixMo-Docs, PixMo-Clocks).
Тестирование модели проводилось на 11 бенчмарках: AI2D, ChartQA, VQA v2, DocVQA, InfographicVQA, TextVQA, RealWorldQA, MMMU, Math-Vista, CountBenchQA и Flickr Count.
Результаты показали, что Molmo, особенно модель Molmo-72B, демонстрирует производительность на уровне GPT-4o, превосходя Gemini 1.5 Pro, Flash и Claude 3.5 Sonnet.
⚠️ Модели Molmo могут испытывать трудности с прозрачными изображениями. В качестве решения, разработчики рекомендуют добавлять белый или темный фон к изображениям перед передачей их в модель, например, с помощью библиотеки PIL.
@ai_machinelearning_big_data
#AI #ML #Molmo #MoE #MMLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍30❤6🔥6
Модели Emu3 разработаны для задач мультимодальной генерации и восприятия: генерации изображений и видео по текстовому описанию, понимание визуальных представлений и прогнозирования кадров в видео.
Модель использует токенизатор изображений SBER-MoVQGAN для преобразования видео и изображений в дискретные токены, RMSNorm для нормализации, GQA для механизмов внимания, SwiGLU для активации и RoPE для позиционного кодирования.
Процесс генерации в Emu3 начинается с обработки моделью начальной последовательности токенов (например, текстовое описание для генерации изображения).
Затем Emu3 авторегрессивно предсказывает наиболее вероятный следующий токен в последовательности. Этот процесс продолжается до тех пор, пока не будет сгенерирована вся последовательность, представляющая собой конечный результат (изображение или видео).
Для обучения использовались наборы данных Aquila, LAION-High-Resolution, InternVid, MSCOCO-30K, GenEval, T2I-CompBench, DPG-Bench, SEED-Bench, RealWorldQA, OCRBench и VBench.
Результаты тестирования показывают превосходство Emu3 над SDXL в генерации и сопоставимость с LLaVA-1.6 в задачах интерпретаций изображений.
Инференс моделей пока доступен только в СLI на Transformers, примеры для генерации или описания входного изображения можно найти в репозитории проекта.
⚠️ Информации о технических требованиях по GPU разработчиками Emu3 не предоставлено.
# Clone the repository
git clone https://github.com/baaivision/Emu3
cd Emu3
# Install requirements
pip install -r requirements.txt
@ai_machinelearning_big_data
#AI #ML #MMLM #Text2Video #Text2Image
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25🔥6❤4👏1
NVLM-1.0-D-72B - первая модель семейства NVLM 1.0 производственного уровня, которое позиционируется как SOTA в задачах "vision-language".
Для достижения SOTA - цели в мультимодальное обучение был включен высококачественный набор данных, предназначенный только для текста, наряду со значительным объемом мультимодальных данных по математике и рассуждениям, что расширило математические и программные возможности во всех модальностях.
Архитектура NVLM 1.0 предполагает 3 варианта исполнения:
Все эти варианты NVLM используют общий визуальный кодер InternViT-6B-448px-V1-5.
Для обработки изображений с высоким разрешением используется динамический подход с высоким разрешением (DHR), при котором изображение разбивается на несколько плиток, каждая из которых кодируется отдельно.
Чтобы повысить эффективность обработки динамических изображений с высоким разрешением в NVLM-D и NVLM-X была разработана конструкция текстового тега плитки. Этот тег добавляется к входной последовательности, чтобы указать начало плитки и ее положение в структуре мозаики. Так генеративные модели лучше понимают структуру изображения.
Эксперименты показали, что добавление тегов плитки значительно улучшает производительность как в задачах, связанных с мультимодальным мышлением (например, MMMU и MathVista), так и в задачах, связанных с распознаванием текста (ChartQA, DocVQA и OCRBench).
Для оценки NVLM 1.0 использовались 9 эталонных тестов Vision language и четыре текстовых теста. Результаты NVLM 1.0 оказались сопоставимыми с результатами ведущих проприетарных и общедоступных моделей, как в задачах на взаимодействие зрения и языка, так и в задачах, ориентированных только на текст.
Разработчики подготовили файл сборки необходимого окружения в Dockerfile для запуска и примеры кода для инференса, использования нескольких GPU и загрузки модели.
@ai_machinelearning_big_data
#AI #ML #MMLM #NVLM #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥20👍12❤7😁1
Rhymes AI опубликовала Aria — первую в мире открытую MMLM, основанную на Mixture-of-Experts. Aria способна обрабатывать текст, изображения, видео и код одновременно, не требуя отдельных настроек для каждого типа данных.
Модель отличается высокой производительностью при обработке мультимодальных и языковых данных, включая изображения различных размеров и соотношений сторон.
Aria использует 3,9 млрд. активных параметров из 25 млрд. общих и обладает длинным контекстным окном в 64 тыс. токенов, что позволяет ей эффективно обрабатывать большие объемы данных, например, создавать аннотации к видео из 256 кадров за 10 секунд.
MoE-архитектура Aria состоит из 66 экспертов. Каждый эксперт структурно идентичен FFN в трансформере. Входной токен направляется только к подмножеству экспертов в каждом слое, это позволяет эффективно распределить вычислительные потребности модели.
ARIA отличается от предыдущих мультимодальных моделей MoE тем, что она обучается с нуля с использованием универсальных экспертов, а не специализированных для каждой модальности.
Обучение ARIA проходило на 6.4 трлн. языковых и 400 млрд. токенах в 4 этапа:
ARIA протестирована бенчмарках MMMU, MathVista, DocVQA, ChartQA, TextVQA, MMBench-1.1, EgoSchema, LongVideoBench, VideoMME, MMLU, MATH, ARC Challenge и HumanEval (задачи понимания кода).
Результаты тестирования показывают, что ARIA превосходит открытые модели Pixtral-12B и Llama3.2-11B и демонстрирует конкурентоспособные результаты по сравнению с проприетарными моделями GPT-4o и Gemini-1.5.
⚠️ Так как Aria имеет 25.3 млрд. общих параметров, они могут быть загружены в один A100 (80GB) с точностью bfloat16.
@ai_machinelearning_big_data
#AI #ML #MMLM #MoE #Aria #RhymesAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍35❤15🔥10
Janus - уникальная мультимодальная модель, которая способна выполнять как задачи понимания, так и генерации изображений. В отличие от других GenAI моделей, Janus использует раздельные пути кодирования визуальной информации, оптимизированные под каждую задачу, находясь в единой архитектуре на основе трансформера.
Это разделение позволяет Janus точно извлекать семантическую информацию из изображений для задач понимания, одновременно сохраняя детализацию и целостность для задач генерации.
Janus имеет 1.3 млрд. параметров с длиной последовательности в 4096.
Процесс обучения Janus проходил в несколько этапов: сначала тренировались адаптеры и Image Heads для связывания визуальных и лингвистических эмбедингов. Затем - предварительное обучение задачам понимания и генерации и, в конце - инструктивная специализация модели при помощи SFT.
Результаты оценки показали, что Janus превосходит предыдущие унифицированные MMLM и демонстрирует конкурентоспособность с некоторыми моделями большего размера.
На MMBench, SEED-Bench и POPE, Janus (1.3B) превзошла LLaVA-v1.5 (7B)12 и Qwen-VL-Chat (7B)13.
На MSCOCO-30K и GenEval Janus превзошла DALL-E 214 и SDXL
Инференс модели пока поддерживается только в CLI на Transformers. Примеры запуска в режимах Multimodal Understanding и Text-to-Image Generation приведены в репозитории проекта.
Способ запуска в GradioUI в коммитах. По отзывам - модель запускается на T4 (16 Gb) в free-tier Google Collab.
@ai_machinelearning_big_data
#AI #ML #MMLM #GenAI #Janus #DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤19👍14🔥4
MMSearch — это тест мультимодального поиска, созданный для оценки возможностей LMMs как систем для поиска информации. Этот тест включает тщательно отобранный датасет из 300 запросов из 14 различных областей.
Чтобы обеспечить сложность бенчмарка, запросы классифицируются по двум основным категориям: новости и знания.
Область новостей состоит из недавних событий на момент сбора данных (август 2024 года), это гарантирует, что ответы на запросы не будут содержаться в обучающих данных для LMM.
В области знаний собраны запросы, требующие редких знаний - те, на которые не могут ответить современные LMM, такие как GPT-4o и Claude-3.5.
Оценка выполняется по 4 задачам, итог выполнения сравнивается с результатом аннотаторов, в роли которых выступали люди :
⚠️ Среднее время выполнения самого сложного теста (End-to-End) на одном GPU A100 - 3-5 часов.
Лидерборд MMSearch 16 моделей, включая результат выполнения тестов человеком можно посмотреть на странице проекта.
@ai_machinelearning_big_data
#AI #ML #MMLM #Benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥16👍7❤4