232K subscribers
3.88K photos
660 videos
17 files
4.5K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
Появился революционный алгоритм для спасения плохих фотографий

Создан новый алгоритм восстановления поврежденных цифровых изображений, использующий методику искусственных нейронных сетей. Об этом пишет EurekAlert!.

Программа инженеров из университета Берна и университета штата Мэриленд корректирует резкость изображения, убирает шум, а также выполняет ряд других задач. Создатели алгоритма обучили его на большом наборе фотографий высокого качества. В результате алгоритм научился предсказывать, как должно выглядеть исходное изображение, на основе данных о текстуре, цвете, свете и границах.

«Традиционно, существовали инструменты, которые решали каждую проблему с изображением в отдельности. Каждый из них использовал интуитивные предположения о том, как выглядит хорошее изображение. В последнее время, искусственные нейронные сети были применены для решения проблем с изображением, но последовательно. Наш алгоритм идет на шаг дальше. Он может решать широкий спектр проблем одновременно», — рассказал Маттиас Цвикер из Бернского университета.
Программисты предложили использовать байесовкую систему глубокого обучения для восстановления резкости размытого изображения, увеличения разрешения и демозаики. Выяснилось, что алгоритм может определять и устранять отклонения от идеальных параметров на загруженных снимках. Иными словами, исправляя, например, зернистость изображения, он одновременно убирает и другие дефекты. Правда, воссоздавать сложные элементы снимка алгоритм пока не умеет.

«Чтобы распознавать черты высокого уровня, алгоритму нужен контекст. Например, если на снимке показано лицо, то вероятнее всего, пиксели сверху — это волосы. Это похоже на решение головоломки. Как только вы определите, где находится этот кусок, сразу станет понятно, что представляют собой пиксели», — подчеркнул Цвикер.
По словам разработчиков, система пока хорошо справляется с простыми недостатками, например размытыми краями объектов. Исследователи представили свои выводы 5 декабря 2017 года, на 31-й конференции по системам обработки информации Neural в Лонг-Бич, штат Калифорния.

Источник: inforesist.org #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
Ученые перестали понимать, как работает ИИ

Ученые и программисты перестали понимать, как именно принимает решения искусственный интеллект. Об этой проблеме заявили сразу несколько специалистов на главной ИИ-конференции — Neural Information Processing Systems, — прошедшей в Лонг-Бич (Калифорния), пишет Quartz.

Эксперты, с которыми пообщались в Quartz, говорят, что нужно действовать, пока система не стала слишком сложной. «Мы не хотим принимать за должное решения ИИ, без понимания их логики, — говорит Джейсон Йосински из Uber. — Чтобы общество приняло модели машинного обучения, мы должны знать, как ИИ принимает решения».
Проблема, которую многие эксперты называют «черной коробочкой», действительно серьезная. Предыдущий опыт показал, что ИИ имеет склонность принимать предвзятые решения и проводить аналогии там, где их не следовало бы проводить. Ошибка ИИ может обойтись очень дорого, например, во время таких операций, как космическая миссия на Марс. Аппараты находятся в 200 млн миль от Земли и стоят сотни миллионов долларов, говорит Кири Вагстафф ИИ-эксперт в Jet Propolusion Lab (NASA).

Ученые к счастью, пытаются находить методы, позволяющие понять логику искусственного интеллекта. Так, исследователь из Google Мэтра Рагху представила доклад, в котором описывается процесс отслеживания действий отдельных «нейронов» нейросети. Анализируя миллионы операций, ей удалось понять, какие из искусственных «нейронов» концентрировались на неверных представлениях, и отключить их. Это доказывает, что перевод работы нейросетей в форму, доступную для понимания человека, — не такая уж невозможная задача. «Это похоже на то, как школьные учителя просят детей пересказать своими словами, что они поняли из объяснений учителя», — говорит Вагстафф.

Источник: hightech.fm #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python