Позволяет можно запускать и управлять сразу несколькими AI-агентами для кодинга: Claude Code, Gemini CLI, Codex — всё в одном дашборде.
- параллельный запуск агентов
- трекинг задач
- переключение между моделями на лету
- встроенный review и контроль над результатами
- backend написан на Rust, frontend на React, всё разворачивается локально
Полностью open-source
@ai_machinelearning_big_data
#ai #aiagent #opensource #Claude #Gemini
Please open Telegram to view this post
VIEW IN TELEGRAM
❤97👍60🔥38🥰4😁3👏1
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По ряду бенчмарков Превосходит Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
Модель действительно стала лучше.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM.
@ai_machinelearning_big_data
#qwen #ml #ai #opensource
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По ряду бенчмарков Превосходит Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Модель действительно стала лучше.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM.
@ai_machinelearning_big_data
#qwen #ml #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤102👍39🔥24🤔7
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Microsoft снова доказывает силу синтетических данных для задач компьютерного зрения!
Современные модели компьютерного зрения с фокусом на человека (Human-centric CV) требуют миллиардов параметров, гигантских датасетов и дорогостоящего инференса. Но можно ли добиться такой же точности, не тратя миллионы?
Исследователи показали: модели можно обучать только на синтетических данных высокого качества — и при этом достигать тех же результатов.
Microsoft представили DAViD — open-source фреймворк, позволяющий создавать цифровых людей с точной геометрией лиц и текстурами.
Проект демонстрирует, как можно использовать синтетические датасеты для:
🟠 Предсказания глубины изображения (Depth Prediction)
🟠 Оценки поверхностей (Normal Estimation)
🟠 Сегментации фона и людей на фото/видео (Background & Human Segmentation)
Почему это круто:
🟢 Синтетические данные = пиксельная точность разметки
🟢 Почти бесконечное разнообразие сцен, ракурсов, освещения и поз
🟢 Прекрасно масштабируются для обучения моделей с нуля или дообучения
Самое приятное, что Microsoft выложили всё в опенсорс:
✔️ 300 000 сэмплов
✔️ Предобученные модели
✔️ Исходный код фреймворка
🟢 Проект: https://microsoft.github.io/DAViD/
🟢 Статья: https://arxiv.org/abs/2507.15365
🟢 Github: https://github.com/microsoft/DAViD
@ai_machinelearning_big_data
Если ты работаешь с human-centric CV — это мощный старт. Даже без реальных данных.
#cv #microsoft #opensource
Современные модели компьютерного зрения с фокусом на человека (Human-centric CV) требуют миллиардов параметров, гигантских датасетов и дорогостоящего инференса. Но можно ли добиться такой же точности, не тратя миллионы?
Исследователи показали: модели можно обучать только на синтетических данных высокого качества — и при этом достигать тех же результатов.
Microsoft представили DAViD — open-source фреймворк, позволяющий создавать цифровых людей с точной геометрией лиц и текстурами.
Проект демонстрирует, как можно использовать синтетические датасеты для:
Почему это круто:
Самое приятное, что Microsoft выложили всё в опенсорс:
✔️ 300 000 сэмплов
✔️ Предобученные модели
✔️ Исходный код фреймворка
@ai_machinelearning_big_data
Если ты работаешь с human-centric CV — это мощный старт. Даже без реальных данных.
#cv #microsoft #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
11❤71👍53🔥23❤🔥3🤩1🥱1👨💻1
This media is not supported in your browser
VIEW IN TELEGRAM
🎬 Alibaba опять в ударе, сегодня у нас релиз Wan2.2
Это первая в мире open-source модель генерации видео с архитектурой MoE и полным кинематографическим контролем!
🚀 Что внутри:
🔸 Первая MoE‑модель для видео — масштабируется без лишней нагрузки. Разные эксперты отвечают за этапы диффузии, работая в команде.
🔸 Кинематографический контроль — управляем светом, цветом, движением камеры и композицией прямо из prompt’а.
🔸 Полная open-source линейка:
-
-
-
📈 Умеет лучше всех генерировать *сложные движения* и выглядит уже почти как кино 🎥
🟢 GitHub: https://github.com/Wan-Video/Wan2.2
🟢 Hugging Face: https://huggingface.co/Wan-AI
🟢 ModelScope: https://modelscope.cn/organization/Wan-AI
@ai_machinelearning_big_data
#AI #VideoAI #GenerativeAI #OpenSource #Wan
Это первая в мире open-source модель генерации видео с архитектурой MoE и полным кинематографическим контролем!
🚀 Что внутри:
🔸 Первая MoE‑модель для видео — масштабируется без лишней нагрузки. Разные эксперты отвечают за этапы диффузии, работая в команде.
🔸 Кинематографический контроль — управляем светом, цветом, движением камеры и композицией прямо из prompt’а.
🔸 Полная open-source линейка:
-
Wan2.2-T2V-A14B
— текст → видео -
Wan2.2-I2V-A14B
— изображение → видео -
Wan2.2-TI2V-5B
— объединённая генерация 📈 Умеет лучше всех генерировать *сложные движения* и выглядит уже почти как кино 🎥
@ai_machinelearning_big_data
#AI #VideoAI #GenerativeAI #OpenSource #Wan
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥91👍28❤25👌2👨💻1
✨ Что нового:
<think>
— теперь только быстрый "non-thinking" режим⚙️ С 3B активных параметров Qwen3-30B-A3B уже приближается к уровню GPT-4o и Qwen3-235B-A22B NT, при этом модель доступна для локального запуска.
@ai_machinelearning_big_data
#AI #ML #qwen #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
❤80👍36🔥19😍4👨💻1
Новая компактная модель из семейства Qwen3-Coder — сочетание высокой производительности и эффективности:
✨ Apache 2.0
💬 Chat: https://chat.qwen.ai
🤗 Hugging Face: https://hf.co/Qwen/Qwen3-Coder-30B-A3B-Instruct
🤖 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-Coder-30B-A3B-Instruct
🔧 Код: https://github.com/QwenLM/qwen-code
@ai_machinelearning_big_data
#AI #ML #qwen #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
❤71🔥29👍18❤🔥3👨💻1
🚀 Tencent расширяет экосистему Hunyuan LLM и выкладывают в открытый доступ еще 4 компактных моделей — 0.5B, 1.8B, 4B и 7B!
Эти модели заточены под low-power устройства: ПК, смартфоны, авто, умные дома и пользовательские GPU.
Модели легко настраиваются под вертикальные задачи и запускаются даже на одной карте.
💡 Особенности:
✅ Fast/slow thinking режимы: лаконичные или глубокие ответы
✅ 256K контекст и продвинутые агентные способности (tool use, планирование, reasoning)
✅ Хорошие метрики на тестах по языку, математике и логике
✅ Модели готовы к продакшену — работают с SGLang, vLLM, TensorRT-LLM
🖥 GitHub:
- 0.5B: https://github.com/Tencent-Hunyuan/Hunyuan-0.5B
- 1.8B: https://github.com/Tencent-Hunyuan/Hunyuan-1.8B
- 4B: https://github.com/Tencent-Hunyuan/Hunyuan-4B
- 7B: https://github.com/Tencent-Hunyuan/Hunyuan-7B
🤗 Hugging Face:
- 0.5B: https://huggingface.co/tencent/Hunyuan-0.5B-Instruct
- 1.8B: https://huggingface.co/tencent/Hunyuan-1.8B-Instruct
- 4B: https://huggingface.co/tencent/Hunyuan-4B-Instruct
- 7B: https://huggingface.co/tencent/Hunyuan-7B-Instruct
🔗 Подробнее: https://hunyuan.tencent.com/modelSquare/home/list
@ai_machinelearning_big_data
#Tencent #Hunyuan #ml #llm #ai #opensource
Эти модели заточены под low-power устройства: ПК, смартфоны, авто, умные дома и пользовательские GPU.
Модели легко настраиваются под вертикальные задачи и запускаются даже на одной карте.
💡 Особенности:
✅ Fast/slow thinking режимы: лаконичные или глубокие ответы
✅ 256K контекст и продвинутые агентные способности (tool use, планирование, reasoning)
✅ Хорошие метрики на тестах по языку, математике и логике
✅ Модели готовы к продакшену — работают с SGLang, vLLM, TensorRT-LLM
- 0.5B: https://github.com/Tencent-Hunyuan/Hunyuan-0.5B
- 1.8B: https://github.com/Tencent-Hunyuan/Hunyuan-1.8B
- 4B: https://github.com/Tencent-Hunyuan/Hunyuan-4B
- 7B: https://github.com/Tencent-Hunyuan/Hunyuan-7B
🤗 Hugging Face:
- 0.5B: https://huggingface.co/tencent/Hunyuan-0.5B-Instruct
- 1.8B: https://huggingface.co/tencent/Hunyuan-1.8B-Instruct
- 4B: https://huggingface.co/tencent/Hunyuan-4B-Instruct
- 7B: https://huggingface.co/tencent/Hunyuan-7B-Instruct
🔗 Подробнее: https://hunyuan.tencent.com/modelSquare/home/list
@ai_machinelearning_big_data
#Tencent #Hunyuan #ml #llm #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍93❤25🔥14👨💻2❤🔥1
— GPT-OSS-120B — 117B параметров, запускается на одной H100 (80GB)
— GPT-OSS-20B — 21B параметров, работает на 16GB GPU
💡 Оба варианта — MoE-модели (Mixture of Experts) с 4-битной квантизацией (MXFP4)
• Архитектура Token-choice MoE с SwiGLU
• Контекст до 128K токенов с RoPE
• Модель заточена на CoT (chain-of-thought)
• Поддержка instruction-following и tool-use
• Совместима с transformers, vLLM, llama.cpp, ollama
• Используется тот же токенизатор, что и в GPT-4o
Младшая модель может запускаться даже на локальном железе!
https://github.com/huggingface/transformers/releases/tag/v4.55.0
🚀 Попробовать можно тут: https://www.gpt-oss.com/
@ai_machinelearning_big_data
#openai #opensource #chatgpt
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥85👍39❤27🍾7👨💻3
🚀 Qwen3-4B-Instruct-2507 и Qwen3-4B-Thinking-2507 — ловите еще один апдейт от Qwen: LLM с поддержкой 256K контекста
🧠 Qwen3-4B-Instruct — идеально подойдёт для:
• генерации текстов
• многоязычных задач
• сложных промптов
🧠 Qwen3-4B-Thinking — заточен под:
• логику
• математику
• программирование и технический анализ
⚡ Обе модели стали:
• точнее
• логичнее
• лучше справляются с длинными диалогами
🔗 Модели на Hugging Face:
https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507
🔗 Модели на ModelScope:
https://modelscope.cn/models/Qwen/Qwen3-4B-Instruct-2507
https://modelscope.cn/models/Qwen/Qwen3-4B-Thinking-2507
@ai_machinelearning_big_data
#AI #ML #qwen #opensource
🧠 Qwen3-4B-Instruct — идеально подойдёт для:
• генерации текстов
• многоязычных задач
• сложных промптов
🧠 Qwen3-4B-Thinking — заточен под:
• логику
• математику
• программирование и технический анализ
⚡ Обе модели стали:
• точнее
• логичнее
• лучше справляются с длинными диалогами
🔗 Модели на Hugging Face:
https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507
🔗 Модели на ModelScope:
https://modelscope.cn/models/Qwen/Qwen3-4B-Instruct-2507
https://modelscope.cn/models/Qwen/Qwen3-4B-Thinking-2507
@ai_machinelearning_big_data
#AI #ML #qwen #opensource
👍81🔥42❤20👨💻2
Что расскажут топ-спикеры на фестивале:
@ai_machinelearning_big_data
#news #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥38🥱18❤9👍7👨💻2
🖼️ GPT-Image-Edit-1.5M — крупнейший и полностью открытый датасет для редактирования изображений по тексту!
🚀 1.5 миллиона триплетов:
инструкция + оригинальное изображение + отредактированное по запросу
Как мы это сделали?
Мы переосмыслили и усилили три известных датасета (OmniEdit, HQ-Edit, UltraEdit) с помощью новой GPT-Image API.
📊 Результаты впечатляют:
Модель FluxKontext, дообученная на этом наборе, показывает:
▫️ 7.24 на GEdit-EN
▫️ 3.80 на ImgEdit-Full
▫️ 8.78 на Complex-Edit
— на уровне с топовыми проприетарными решениями!
🎯 Инструкции выполняются точно, а изображения выглядят реалистично.
Цель — сократить разрыв между open-source и закрытыми системами редактирования.
🔗 Подробнее:
🌐 Проект: https://ucsc-vlaa.github.io/GPT-Image-Edit/
💻 Код: https://github.com/wyhlovecpp/GPT-Image-Edit
📦 Датасет: https://huggingface.co/datasets/UCSC-VLAA/GPT-Image-Edit-1.5M
🤖 Модель: https://huggingface.co/UCSC-VLAA/gpt-image-edit-training
📄 Статья: https://arxiv.org/abs/2507.21033
@ai_machinelearning_big_data
#AI #ImageEditing #OpenSource #GPT4V #Multimodal
🚀 1.5 миллиона триплетов:
инструкция + оригинальное изображение + отредактированное по запросу
Как мы это сделали?
Мы переосмыслили и усилили три известных датасета (OmniEdit, HQ-Edit, UltraEdit) с помощью новой GPT-Image API.
📊 Результаты впечатляют:
Модель FluxKontext, дообученная на этом наборе, показывает:
▫️ 7.24 на GEdit-EN
▫️ 3.80 на ImgEdit-Full
▫️ 8.78 на Complex-Edit
— на уровне с топовыми проприетарными решениями!
🎯 Инструкции выполняются точно, а изображения выглядят реалистично.
Цель — сократить разрыв между open-source и закрытыми системами редактирования.
🔗 Подробнее:
🌐 Проект: https://ucsc-vlaa.github.io/GPT-Image-Edit/
💻 Код: https://github.com/wyhlovecpp/GPT-Image-Edit
📦 Датасет: https://huggingface.co/datasets/UCSC-VLAA/GPT-Image-Edit-1.5M
🤖 Модель: https://huggingface.co/UCSC-VLAA/gpt-image-edit-training
📄 Статья: https://arxiv.org/abs/2507.21033
@ai_machinelearning_big_data
#AI #ImageEditing #OpenSource #GPT4V #Multimodal
1❤96👍41🔥19👏2
Модель показывает лучшие результаты в своём классе среди открытых решений, лидируя на 41 бенчмарке.
- Image Reasoning — понимание изображений, анализ нескольких изображений, распознавание объектов.
- Video Understanding — раскадровка длинных видео, определение событий, которые происходят на кадрах из видео.
- GUI-задачи — понимание интрефейсов, распознавание иконок, кнопок и тд, помощь в управлении рабочим столом.
- Сложный анализ графиков и документов — разбор различных отчётов, извлечение информации их них.
- Grounding — точная локализация элементов на изображениях.
Здесь можно почитать про GLM-4.5, а здесь посмотреть техрепорт, там много интересного.
@ai_machinelearning_big_data
#GLM #opensource #vlm
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥87👍24❤19🥰4😁1🤝1
🎮 Matrix-Game 2.0 — первая опенсорс модель, которая генерирует интерактивные 3D-миры из текста в реальном времени
Неделю назад DeepMind показала Genie 3, но код не был выложен в открытый доступ.
А сегодня Skywork выложили свой генератор
Matrix-Game 2.0 миров в опенсорс 🚀
Возможности:
🟢 25 кадров/с в реальном времени
🟢 Генерирует минуты непрерывного геймплея
🟢 Полная интерактивность: движение, повороты, исследование мира
Можно использовать несколько встроенных шаблонов: город, дикая природа, TempleRun, GTA и др.
Зачем это нужно:
🟠 Создание игровых движков
🟠 Тренировка AI-агентов
🟠 Создание виртуальных персонажей
Заявленые требования: GPU с памятью не менее 24 ГБ (A100 и H100 протестированы).
Как работает:
• Обучена на 1350 часах видео геймлея
• Управление: движок реагирует на нажатия клавиш и движение мыши на каждом кадре
• Модель: 1,3 млрд параметров
• KV-Cache хранит контекст, чтобы окружение генерировалось без ограничений по времени
🟡 Huggingface Model: https://huggingface.co/Skywork/Matrix-Game-2.0
🟡 Repo: https://matrix-game-v2.github.io
@ai_machinelearning_big_data
#AI #MatrixGame #OpenSource #DeepLearning #GameDev #InteractiveAI #WorldModel #GenerativeAI #RealtimeAI #MachineLearning
Неделю назад DeepMind показала Genie 3, но код не был выложен в открытый доступ.
А сегодня Skywork выложили свой генератор
Matrix-Game 2.0 миров в опенсорс 🚀
Возможности:
Можно использовать несколько встроенных шаблонов: город, дикая природа, TempleRun, GTA и др.
Зачем это нужно:
Заявленые требования: GPU с памятью не менее 24 ГБ (A100 и H100 протестированы).
Как работает:
• Обучена на 1350 часах видео геймлея
• Управление: движок реагирует на нажатия клавиш и движение мыши на каждом кадре
• Модель: 1,3 млрд параметров
• KV-Cache хранит контекст, чтобы окружение генерировалось без ограничений по времени
@ai_machinelearning_big_data
#AI #MatrixGame #OpenSource #DeepLearning #GameDev #InteractiveAI #WorldModel #GenerativeAI #RealtimeAI #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥88👍30❤24🥱5😐4