287K subscribers
3.98K photos
687 videos
17 files
4.56K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
📌 Miras: как улучшить модели через память и внимание.

Google Research опубликовал интересную статью «It’s All Connected», в которой предлагают решение проблемы квадратичной сложности трансформеров в обработке последовательностей : фреймворк Miras, который объединяет онлайн-оптимизацию, управление памятью и внимание в единую систему, что в итоге позволяет создавать более эффективные модели.

Miras — это 4 компонента: архитектура памяти, целевая функция (смещение внимания), регуляризация удержания и алгоритм обучения. Miras позволяет экспериментировать с loss-функциями (Huber loss для устойчивости к выбросам) и регуляризацией (KL-дивергенция, Elastic Net).

С помощью Miras были созданы 3 тестовые модели — Moneta, Yaad и Memora. Moneta использует Lp-нормы для баланса между запоминанием и устойчивостью, Yaad комбинирует L1 и L2 через Huber loss, а Memora применяет Softmax с KL-регуляризацией.

В экспериментах тестовые модели обошли трансформеры и современные RNN на задачах языкового моделирования и поиска информации в длинных контекстах. На тесте «иголка в стоге сена» (8K токенов) Moneta достигла точности 98.8%, тогда как Mamba2 — лишь 31%.

Статья не просто теоретическое изыскание — это практическое руководство для разработки моделей. Четкая структура Miras помогает систематизировать существующие подходы и экспериментировать с компонентами. Например, замена регуляризации на Elastic Net или Bregman divergence может улучшить управление памятью в нишевых задачах.

Miras — шаг к более осмысленному проектированию архитектур. Если трансформеры — это «кувалда» для масштаба, то описанный в статье подход Google Research - хирургический инструмент, где каждый компонент настраивается под конкретную задачу.

🟡Arxiv

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍53🔥1611
🌟 CoMotion: одновременное отслеживание движения нескольких людей в видео.

CoMotion - метод, разработанный Apple для одновременного отслеживания 3D-движений нескольких людей, который принципиально отличается от покадрового обнаружения и классических способов трекинга.

CoMotion использует рекуррентную модель, которая поддерживает набор отслеживаемых 3D-поз и обновляет их при поступлении нового кадра, непосредственно анализируя пиксели изображения. Способность использовать визуальные подсказки вкупе с парадигмой tracking by attention позволяет CoMotion эффективно отслеживать перекрывающихся и временно исчезающих из виду людей.

Архитектура CoMotion состоит из модуля обнаружения (он определяет кандидатов на новые треки) и модуля обновления поз (корректирует позы существующих треков). Оба модуля работают с признаками изображения, извлеченными с помощью стандартной модели ConvNextV2. Модуль обновления поз использует cross-attention к признакам изображения для каждого трека, опираясь на предыдущие состояния, и применяет GRU для рекуррентного обновления скрытых состояний.

Прогнозирование 3D-поз выполняется путем параметризации модели SMPL, а управление треками основано на эвристических правилах, использующих модифицированную метрику Object Keypoint Similarity (OKS).

Модель CoMotion обучается в 3 этапа. Первый - предварительное обучение энкодера и модуля обнаружения на больших наборах данных отдельных изображений (псевдо-размеченные InstaVariety, COCO, MPII и синтетический BEDLAM). Второй - обучение модуля обновления поз на коротких видео из BEDLAM, WHAC-A-MOLE и размеченных PoseTrack и DanceTrack. На финальном этапе обучение модуля обновления поз продолжается на более длинных видеопоследовательностях.

Экспериментальная оценка CoMotion проводилась на стандартных бенчмарках для отслеживания и оценки поз. На PoseTrack21 CoMotion показал значительное улучшение метрик (MOTA на 14% и IDF1 на 12%). При этом CoMotion работает на порядок быстрее, чем сопоставимая система 4DHumans.

▶️Локальный инференс:

# Clone the repo
git clone https://github.com/apple/ml-comotion.git
cd ml-comotion

# Create a conda env
conda create -n comotion -y python=3.10
conda activate comotion

# Install dependencies
pip install -e

# Download models
bash get_pretrained_models.sh

# Run CoMotion
python demo.py -i path/to/video.mp4 -o results/


📌Лицензирование: Apple License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #3DTracking #CoMotion #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4119🔥11
✔️ OpenAI добавляет невидимые символы в инференс моделей o3 и o4-mini.

Платные подписчики ChatGPT получили доступ к обновлённым моделям o3 и o4-mini в середине апреля, но пользователи быстро заметили странности: в длинных текстах появляются невидимые Unicode-символы - "Неразрывные пробелы" (U+202F). Они выглядят как обычные пробелы, но обнаруживаются через специальные инструменты.

Стартап RumiAI проанализировал ситуацию и предположил, что это попытка добавить водяные знаки для отслеживания ИИ-генерации. Однако символы легко удалить через поиск-замену, что ставит под вопрос их эффективность. Альтернативная версия — модели просто переняли форматирование из обучающих данных, где неразрывные пробелы используются для предотвращения разрывов строк.

OpenAI пока не дала никаких комментариев о причинах появления непечатных символов в результатах генерации.
winbuzzer.com

✔️ CharacterAI запускает AvatarFX: генерация видео с ИИ.

CharacterAI представила AvatarFX — систему, которая превращает изображения в говорящие, поющие и эмоционирущие видео за пару кликов. Технология сочетает фотореализм, синхронизацию движений губ, тела и рук, а также поддержку длинных роликов.

Под капотом — модифицированная архитектура DiT с flow-based диффузионными моделями, которые обучаются на разнообразных данных: от реалистичных людей до анимированных объектов. От конкурентов систему отличает работа с готовыми изображениями (не только текстовыми описаниями), поддержка нескольких говорящих в кадре и стабильность анимации.
Первыми доступ к AvatarFX получат подписчики CAI+. Остальным придется подождать или записаться в лист ожидания.
blog.character.ai

✔️ Dia: открытая ИИ-модель для генерации речи с контролем над интонацией и невербальными элементами.

Два корейских студента без глубокого опыта в ИИ разработали Dia — модель для создания подкаст-диалогов, способную конкурировать с Google NotebookLM. Используя TPU от Google, они обучили модель на 1,6 млрд. параметров, которая позволяет настраивать тон голоса, добавлять паузы, смех и клонировать голоса.

Dia доступна на Hugging Face и GitHub, для запуска на ПК нужен GPU от 10 ГБ VRAM. В отличие от аналогов, Dia даёт пользователям контроль над сценарием: можно прописать реплики, выбрать «характер» говорящего или загрузить образец для клонирования. Короткое тестирование, проведенное редакцией TechCrunch показало, что Dia справляется с диалогами на любые темы, а качество голосов не уступает коммерческим решениям.
techcrunch.com

✔️ Physical Intelligence выпустила модель для робототехники π-0,5.

Physical Intelligence представила модель π0.5 — шаг к роботам, которые справляются с задачами в совершенно новых условиях. В отличие от предшественников, эта система на базе VLA обучалась на разнородных данных: от распознавания объектов до демо движений роботов. Это позволяет ей понимать не только как действовать, но и что именно делать в незнакомой среде — например, класть посуду в раковину, даже если раньше её не видела.

Модель анализирует семантику задачи, разбивает её на шаги и генерирует команды для моторных систем. π0.5 умеет реагировать и на голосовые команды разной детализации — от «убери посуду» до точечных указаний. В планах — улучшение автономного обучения и запросов помощи в сложных ситуациях.
physicalintelligence.company

✔️ Фильмы с ИИ смогут претендовать на «Оскар».

Академия киноискусств официально разрешила номинировать на «Оскар» фильмы, созданные с использованием ИИ. Как заявили организаторы, технологии генеративного ИИ не станут преимуществом или препятствием при оценке. Но теперь, чтобы голосовать в финале, члены Академии обязаны посмотреть все номинированные работы — это часть новых правил.

Несмотря на прогресс, споры вокруг ИИ не утихают. Актеры и сценаристы опасаются, что алгоритмы заменят их в создании сценариев или дубляжа. Хотя некоторые студии уже внедряют ИИ, аниматоры и режиссеры сомневаются: технологии пока не способны конкурировать с эмоциональной глубиной человеческой работы.
bbc.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥42👍2012🤣5🤔1
🌟 Describe Anything: сегментное аннотирование изображений и видео.

Describe Anything Model (DAM) - архитектура, разработанная Nvidia, для генерации точных и детальных описаний для конкретных областей на изображениях и видео. Традиционные VLM-модели как отдельная сущность или в связке с SAM-помощниками часто теряют ньюансы, особенно при наличии мелких объектов или динамичных сцен на целевом источнике.

DAM справляется с этим за счет 2 инноваций в своей архитектуре:

🟢Фокальный промпт — комбинация полного изображения и его маски с обрезанной областью интереса, расширенной для захвата контекста (например, увеличение bounding box в 3 раза).

🟢Локализованный визуальный бэкбон — два параллельных энкодера: глобальный (обрабатывает все изображение) и региональный (анализирует фокальный промпт). Они объединяются механизм cross-attention, позволяя сохранять детали объекта и его связь с окружением.

Модель принимает изображение или видео и бинарную маску целевой области интереса. Глобальный энкодер извлекает общие признаки, региональный — фокусируется на деталях выбранной зоны. Через адаптеры с кросс-вниманием признаки объединяются, после чего LLM генерирует описание. Для видео маски применяются к каждому кадру, а признаки агрегируются во времени.

▶️В релизе DAM представлены 3 модели:

🟠DAM-3B - базовая модель для аннотирования изображений;

🟠DAM-3B-Video - модель для работы с видео;

🟠DAM-3B-Self-Contained - автономная версия базовой модели для интеграций без сторонних зависимостей.


▶️Локальный инференс с интерактивным Gradio WebUI:

# Clone the repo
git clone https://github.com/NVlabs/describe-anything
cd describe-anything

# Create a conda env
conda create -n describe-anything
conda activate describe-anything

# Install dependencies
pip install -v

# Gradio Demo for Image Descriptions
python demo_simple.py

# Gradio Demo for Video Descriptions
python demo_video.py


📌Лицензирование моделей: NVIDIA Noncommercial License.

📌Лицензирование кода : Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Demo
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DAM #NVIDIA #Annotation
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥62👍2712
🪰 Виртуальная дрозофила: зачем DeepMind «оживили» плодовую мушку — и что это даёт науке

Кратко: исследователи создали самую точную на сегодня цифровую модель Drosophila melanogaster.

Она умеет ходить, летать и ориентироваться в пространстве. Её «тело» рассчитано в физическом движке MuJoCo, а «мозг» — нейросеть, обученная на реальных видеозаписях поведения мух.

🌟 Как это сделали:
1) Физика тела
Исследователи запрограммировали 52 степени свободы суставов, добавили моделирование аэродинамики крыльев и «клейких» лапок-актуаторов, имитирующих силу сцепления с поверхностью.
Источник: Nature

2) Нейроконтроль
Нейросеть обучалась на сотнях видеозаписей реальных траекторий и затем управляла виртуальной мухой в MuJoCo, выбирая, как двигать крыльями и лапками в каждый момент.

3) Зрение
Виртуальные фасеточные глаза передают изображение контроллеру: модель может следовать по заданной траектории и корректировать курс по ходу движения.

4) Открытый код
Весь проект опубликован на GitHub (flybody) под лицензией Apache-2.0 — можно запускать симулятор, писать собственных агентов и экспериментировать с поведением мухи.

✔️Зачем это нужно

▪️ Нейронаука без электродов.
Модель — это «песочница», в которой можно виртуально перерезать нервы, добавлять шум, менять форму крыла и мгновенно видеть, как это влияет на поведение. Такие эксперименты на живых организмах часто невозможны.

▪️ Тест-полигон для ИИ и робототехники.
Готовая референс-модель движений и сенсорики, вдохновлённая природой — идеальна для обучения автономных систем.

▪️ От мушки к зебре — и дальше.
Методика уже применяется к виртуальным грызунам, а следующим объектом станет зебра-данио (у неё 70 % белков кодируются теми же генами, что у человека). Это даёт уникальную возможность изучить, как мозг приспосабливается к различной морфологии тела — не выходя из симулятора.
Источник: Janelia Research Campus

🔥 Что это даёт
▪️ Исследователи получают бесплатный инструмент для быстрой проверки гипотез о связке «нейроны → движение».

▪️ Робототехники — возможность адаптировать природные механизмы управления и баланса.

▪️ Для нас— ещё один пример того, как ИИ позволяет разбирать живые системы на компоненты, не причиняя вреда природе.

✔️ Посмотреть код, скомпилировать модель и погонять виртуальную мушку можно уже сейчас:

🔜 GitHub
🔜 Статья в Nature

@ai_machinelearning_big_data


#DeepMind #nature #science
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
78🔥48👍25🤔12👌2❤‍🔥1🤨1
✔️ OpenAI добавила в API модель генерации изображений GPT-Image-1.

OpenAI открыла доступ к GPT-Image-1 через API — ранее она работала только в ChatGPT.
Стоимость генерации тарифицируется по токенам: текст ($5/млн), ввод изображений ($10/млн), вывод ($40/млн). Одно изображение обходится в $0,02–0,19. Например, картинка 1024×1024 в высоком качестве «съест» 4160 токенов. Модель превосходит Midjourney-v7 в точности следования запросам, но имеет ограничения: плохо распознаёт мелкий текст, нелатинские шрифты, медицинские данные.

Изображения можно загружать через URL или Base64 (PNG, JPEG до 20 МБ). Максимальное разрешение — 768×2000 пикселей. API анализирует объекты, цвета, текст, но не подходит для задач с высокой точностью. Для безопасности добавлены фильтры контента и метаданные C2PA. Тестировать модель можно в Playground OpenAI — подробности в гайдах по работе с API.
openai.com

✔️ Kortix AI выпустила Suna — первый в мире опенсорсный ИИ-агент общего назначения.

Suna — открытый ИИ-агент, способный выполнять реальные задачи через чат-интерфейс. В отличие от закрытых коммерческих моделей, Suna работает офлайн, бесплатен и доступен для самостоятельного хостинга.

Suna не просто отвечает на вопросы: он автоматизирует рутину — от парсинга сайтов и генерации отчетов до развертывания веб-приложений. В основе лежит изолированная Docker-среда, React/Next.js для интерфейса и интеграция с LiteLLM, Supabase и Redis. Помимо исходного кода, есть подписка на развернутый у Kortix AI сервис: бесплатно 10 минут в месяц, за 29$ - 4 часа, а за 199\мес - 40 часов работы Suna.
suna.so

✔️ Firefox анонсировал предпросмотр ссылок с локальным ИИ.

Пользователи Firefox теперь могут заглянуть в содержимое ссылки, не открывая ее. Экспериментальная функция в Firefox Labs 138 показывает карточку с заголовком, описанием, временем чтения и тремя ключевыми пунктами, сгенерированными локальной языковой моделью. Все работает через HTTPS-запросы без загрузки страницы или выполнения скриптов — данные парсятся из метатегов Open Graph и Reader View.

Приватность в приоритете: модель SmolLM2-360M (369 МБ) запускается на устройстве через WebAssembly (wllama), избегая передачи данных в облако. Функция пока в тесте: разработчики ждут фидбека об опыте использования от пользователей.
blog.mozilla.org

✔️ xAI добавила 3 новые функции в Grok.

xAI расширила возможности голосового ассистента Grok: Grok Vision, поддержка многоязыкового аудио и поиск в реальном времени в голосовом режиме. Все это уже доступно пользователям iOS, а для Android-устройств две последние опции открыты только с подпиской SuperGrok. Grok Vision, как заявляют разработчики, позволяет ассистенту анализировать экран смартфона и комментировать происходящее «здесь и сейчас» — например, распознавать объекты или текст.
Ebby Amir (xAI) в X (ex-Twitter)

✔️ BMW внедрит ИИ DeepSeek в свои автомобили для Китая .

BMW объявил о партнерстве с DeepSeek для интеграции ИИ-технологий в машины, продаваемые в Китае. Сотрудничество, представленное на Шанхайском автосалоне, направлено на улучшение «Умного персонального ассистента» — система получит новые функции и расширенный доступ к данным.

Интеграция ИИ DeepSeek ускорит переход BMW к «программно-определяемым» автомобилям. Ожидается, что обновления затронут не только ассистента, но и улучшат интерфейсы, а также поддержат более сложные сценарии автономного управления.
bmwblog.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6416🔥8🗿2
🌟 Периодическая таблица машинного обучения.

Исследователи из МiT, Microsoft и Goggle создали фреймворк, который может изменить подход к разработке алгоритмов машинного обучения - I-Con (Information Contrastive Learning).

Он объединил и систематизировал более 20 классических методов ML — от кластеризации до контрастивного обучения в единую структуру, напоминающую периодическую таблицу. Как и ее химический прародитель, эта таблица не только упорядочивает известные алгоритмы, но и указывает на пробелы, где могут существовать еще не открытые методы.

В основе I-Con лежит уравнение, минимизирующее расхождение Кульбака-Лейблера между двумя распределениями: «идеальным» (на основе данных) и тем, что обучает модель. Это уравнение, найденное почти случайно, стало ключом к объединению таких разных подходов, как k-средних, SimCLR и PCA.

Для примера - алгоритм кластеризации в I-Con рассматривается как способ выравнивания распределений сходства точек, а контрастивное обучение — как работа с аугментациями изображений. Такая унификация позволила ресерчерам буквально «скрещивать» методы: комбинация идей из контрастивного обучения и спектральной кластеризации дала новый алгоритм, который на 8% точнее предсказывает классы изображений без меток.

I-Con — не просто теория. В экспериментах на ImageNet-1K фреймворк показал, как перенос приемов между областями машинного обучения улучшает результаты. Например, техника дебайсинга (исправления смещений в данных), изначально созданная для контрастивного обучения, повысила точность кластеризации. А добавление проходов по neighbor propagation в алгоритмы помогло моделям лучше учитывать локальную структуру данных.

Но главное преимущество I-Con — его предсказательная сила. Пустые клетки в таблице указывают на гипотетические алгоритмы, которые ещё предстоит создать. Иными словами, комбинируя подходы из supervised и unsupervised обучения, можно разработать методы, эффективные для задач с частично размеченными данными. Уже сейчас фреймворк помогает избежать «изобретения велосипеда»: вместо того чтобы перебирать варианты наугад, исследователи могут целенаправленно комбинировать элементы из таблицы.

Пока рано говорить, станет ли I-Con общепринятым стандартом, но его потенциал очевиден. Как минимум, он предлагает свежий взгляд на машинное обучение — не как на набор разрозненных алгоритмов, а как на систему со скрытой структурой. И если химики когда-то заполняли пустоты в таблице Менделеева, то ML-исследователи теперь могут делать то же самое — осознанно, а не методом проб и ошибок.

▶️Практическое применение:

# Clone the repo
git clone https://github.com/ShadeAlsha/ICon.git
cd ICon

# Create a conda env
conda create -n ICon
conda activate ICon

# Install dependencies
pip install -e .

# Evaluate Models
cd ICon
python evaluate.py

# After evaluation, see the results in tensorboard
cd ../logs/evaluate
tensorboard --logdir .

# Train a Model
cd ICon
python train.py



🟡Страница проекта
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ICon #Framework #Algorithms
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5817🔥10🤣4💘2🦄2
✔️ Adobe запускает публичную бета-версию механизма маркировки сгенерированных изображений.

Adobe запустила публичную бета-версию веб-приложения Content Authenticity — бесплатного инструмента, который помогает закрепить за контентом «цифровой паспорт» (Content Credentials). С его помощью можно привязать к файлам идентификатор, ссылки на соцсети и даже запретить обучение ИИ на своих работах.

Технология объединяет криптографические метаданные, цифровые отпечатки и невидимые водяные знаки, которые сохраняются даже после скриншотов. Проверить данные можно через Chrome-расширение или Inspect-сервис.

Adobe ведет переговоры с Leica, Nikon, Samsung и OpenAI, чтобы встроить Content Credentials в камеры, смартфоны и ИИ-инструменты. Для авторов это не только защита, но и возможность повысить доверие аудитории. Пользователи, в свою очередь, получат прозрачность: «паспорт» покажет, кто и как создал контент, что особенно актуально в эпоху deepfake-угроз.
blog.adobe.com

✔️ Tavus представила липсинк-модель Hummingbird-0.

Tavus, разработчик в области ИИ-видео, запустила в превью модель Hummingbird-0 — модель для синхронизации движений губ без предварительного обучения. Теперь достаточно одного видео и аудиодорожки, чтобы «оживить» речь человека, сохранив его мимику и качество изображения.

Hummingbird-0 построен на компонентах флагманской модели Phoenix-3 и превосходит аналоги по точности синхронизации (LSE-D — 6,74) и сохранению идентичности (Arcface — 0,84). Интеграция с генераторами видео (Veo или Sora) позволяет добавлять голос даже к «немым» роликам, превращая их в полноценные истории. Модель доступна на платформах Tavus и FAL — попробовать можно уже сегодня.
tavus.io

✔️ Классические игры стали новым бенчмарком для ИИ.

Game Arena представила исследование, где платформеры и игры-головоломки используются для тестирования фундаментальных моделей. Оказалось, что Claude 3.7 или GPT-4o справляются хуже людей в задачах, требующих быстрой реакции и пространственного мышления - в Tetris модели часто ошибались при выборе блоков, а в Sokoban не могли пройти уровни, которые человек решает за минуты.

Для экспериментов игры адаптировали: добавили модули преобразования изображений в текст, «заморозку» процесса и память для долгосрочного планирования. Лучшие результаты показали модели с усиленным логическим мышлением, но разрыв с человеческим уровнем все еще значителен.
Проект открыт для разработчиков — код доступен на GitHub.
lmgame.org

✔️ Google DeepMind запустила модель генерации музыки Lyria 2 в обновленном сервисе Music AI Sandbox.

DeepMind представили обновление платформы Music AI Sandbox, добавив инструменты для генерации и редактирования музыки на базе ИИ. В основе — модель Lyria 2, создающая высококачественные треки с детализацией жанровых нюансов, и Lyria RealTime, позволяющая экспериментировать со звуком в реальном времени.

Новые функции включают генерацию инструментальных партий по текстовым описаниям, расширение композиций и редактирование стиля с помощью текстовых подсказок. Музыканты могут менять темп, тональность или полностью переосмыслить трек. Платформа, разработанная при участии артистов, теперь доступна в США — заявки принимаются через запись в вейтлист.
deepmind

✔️ YouTube тестирует AI Overviews в поиске.

YouTube начал ограниченное тестирование AI Overviews — "карусели" с ключевыми фрагментами видео в результатах поиска. Система анализирует ролики по запросам (например, «лучшие беспроводные наушники» или «музеи Сан-Франциско») и выводит «выжимку» из самых информативных моментов. Пока функция доступна лишь части пользователей YouTube Premium в США и работает на английском языке.

Тестовый период продлится недолго, а его итоги определят судьбу AI Overviews. Пользователи смогут оценивать функцию через лайки/дизлайки, а YouTube — собрать обратную связь для доработки функции.
searchengineland

✔️ OpenAI запускает облегчённую версию Deep Research — и она достаётся даже бесплатным пользователям.
Работает на базе o4-mini:
Быстрее, дешевле, почти без потерь в качестве.



@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4418🔥11🤬2😐2