Stability AI совместно с AMD оптимизировали линейку моделей Stable Diffusion для работы на GPU Radeon и APU Ryzen AI. Инженеры использовали ONNX-формат, чтобы повысить скорость генерации без потери качества изображений.
Оптимизация SD3.5 и SDXL и их Turbo-версий показала прирост производительности до 2,6x и 3,8x соответственно — по сравнению с базовыми реализациями на PyTorch. Обновленные модели совместимы со средами, поддерживающими ONNX Runtime, имеют суффикс
amdgpu
в названии и доступны на Hugging Face.stability.ai
Intel представила долгожданный техпроцесс 18A, который может стать поворотным моментом для ее foundry-подразделения. Согласно техотчету, новинка обходит Intel 3 по ключевым параметрам: прирост плотности на 30%, повышение скорости на 25% и сокращение энергопотребления на 36% для ядер Arm. Основой успеха стали RibbonFET (транзисторы с gate-all-around) и PowerVia — технология обратного питания, которая стабилизирует подачу напряжения и освобождает место для компактного размещения элементов.
18A демонстрирует плотность SRAM, аналогичную TSMC N2, что выводит Intel в прямые конкуренты тайваньскому гиганту. Уже в 2025 году процесс планируют использовать в SoC Panther Lake, а к 2026-му — в серверных Xeon Clearwater Forest. Пока же инженеры и аналитики ждут первых образцов — проверить, оправдаются ли заявленные характеристики в реальных продуктах.
wccftech.com
Несмотря на перенос части функций Apple Intelligence, компания активно продвигает готовые решения. В новом рекламном ролике Apple показала работу инструмента Clean Up в приложении Photos: он позволяет убрать элементы фона, сохранив основной объект.
Функция уже доступна на iPhone 16, 15 Pro/Pro Max, iPad с чипами A17 Pro/M1 и новее, а также Mac на M1 и позднее. Требуются iOS 18.1, iPadOS 18.1 или macOS Sequoia 15.1.
9to5mac.com
Объединенные Арабские Эмираты (ОАЭ) станут первой страной в мире, где ИИ будет использоваться для разработки новых и пересмотра существующих законов. Ожидается, что эта инициатива повысит эффективность законодательного процесса на 70 %.
Правительство ОАЭ одобрило создание Управления по регулированию и интеллекту - нового органа, которому поручено использовать ИИ для анализа существующих федеральных и местных законов, судебных решений, исполнительных процедур, государственных услуг и социально-экономических последствий законодательства.
ft.com
Sand AI выпустила Magi-1, первую в истории Text-to-Video модель с 24 млрд. параметров, разработанную специально для создания видео. Magi-1 опубликована в открытом доступе и позволяет создавать высококачественные полнометражные видеоролики с исключительной реалистичностью, плавностью и тонким контролем над видеосценами.
Черрипики и результаты тестов в популярных бенчмарках превосходны. Попробовать можно в демо-спейсе.
sand.ai
Эмоции и тон. Можно задавать тональность и интонацию через udio prompt, а также управлять «невербалкой»: смех, кашель, вздохи и т. д. Для запуска нужно ≈10 GB VRAM, на A4000 GPU, ~40 токенов/с.
Demo / Github / HF
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍50🔥18❤11
Google Research опубликовал интересную статью «It’s All Connected», в которой предлагают решение проблемы квадратичной сложности трансформеров в обработке последовательностей : фреймворк Miras, который объединяет онлайн-оптимизацию, управление памятью и внимание в единую систему, что в итоге позволяет создавать более эффективные модели.
Miras — это 4 компонента: архитектура памяти, целевая функция (смещение внимания), регуляризация удержания и алгоритм обучения. Miras позволяет экспериментировать с loss-функциями (Huber loss для устойчивости к выбросам) и регуляризацией (KL-дивергенция, Elastic Net).
С помощью Miras были созданы 3 тестовые модели — Moneta, Yaad и Memora. Moneta использует Lp-нормы для баланса между запоминанием и устойчивостью, Yaad комбинирует L1 и L2 через Huber loss, а Memora применяет Softmax с KL-регуляризацией.
В экспериментах тестовые модели обошли трансформеры и современные RNN на задачах языкового моделирования и поиска информации в длинных контекстах. На тесте «иголка в стоге сена» (8K токенов) Moneta достигла точности 98.8%, тогда как Mamba2 — лишь 31%.
Статья не просто теоретическое изыскание — это практическое руководство для разработки моделей. Четкая структура Miras помогает систематизировать существующие подходы и экспериментировать с компонентами. Например, замена регуляризации на Elastic Net или Bregman divergence может улучшить управление памятью в нишевых задачах.
Miras — шаг к более осмысленному проектированию архитектур. Если трансформеры — это «кувалда» для масштаба, то описанный в статье подход Google Research - хирургический инструмент, где каждый компонент настраивается под конкретную задачу.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍53🔥16❤11
CoMotion - метод, разработанный Apple для одновременного отслеживания 3D-движений нескольких людей, который принципиально отличается от покадрового обнаружения и классических способов трекинга.
CoMotion использует рекуррентную модель, которая поддерживает набор отслеживаемых 3D-поз и обновляет их при поступлении нового кадра, непосредственно анализируя пиксели изображения. Способность использовать визуальные подсказки вкупе с парадигмой
tracking by attention
позволяет CoMotion эффективно отслеживать перекрывающихся и временно исчезающих из виду людей.Архитектура CoMotion состоит из модуля обнаружения (он определяет кандидатов на новые треки) и модуля обновления поз (корректирует позы существующих треков). Оба модуля работают с признаками изображения, извлеченными с помощью стандартной модели
ConvNextV2
. Модуль обновления поз использует cross-attention к признакам изображения для каждого трека, опираясь на предыдущие состояния, и применяет GRU для рекуррентного обновления скрытых состояний.Прогнозирование 3D-поз выполняется путем параметризации модели SMPL, а управление треками основано на эвристических правилах, использующих модифицированную метрику Object Keypoint Similarity (OKS).
Модель CoMotion обучается в 3 этапа. Первый - предварительное обучение энкодера и модуля обнаружения на больших наборах данных отдельных изображений (псевдо-размеченные InstaVariety, COCO, MPII и синтетический BEDLAM). Второй - обучение модуля обновления поз на коротких видео из BEDLAM, WHAC-A-MOLE и размеченных PoseTrack и DanceTrack. На финальном этапе обучение модуля обновления поз продолжается на более длинных видеопоследовательностях.
Экспериментальная оценка CoMotion проводилась на стандартных бенчмарках для отслеживания и оценки поз. На PoseTrack21 CoMotion показал значительное улучшение метрик (MOTA на 14% и IDF1 на 12%). При этом CoMotion работает на порядок быстрее, чем сопоставимая система 4DHumans.
# Clone the repo
git clone https://github.com/apple/ml-comotion.git
cd ml-comotion
# Create a conda env
conda create -n comotion -y python=3.10
conda activate comotion
# Install dependencies
pip install -e
# Download models
bash get_pretrained_models.sh
# Run CoMotion
python demo.py -i path/to/video.mp4 -o results/
@ai_machinelearning_big_data
#AI #ML #3DTracking #CoMotion #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41❤19🔥11
Платные подписчики ChatGPT получили доступ к обновлённым моделям o3 и o4-mini в середине апреля, но пользователи быстро заметили странности: в длинных текстах появляются невидимые Unicode-символы - "Неразрывные пробелы" (U+202F). Они выглядят как обычные пробелы, но обнаруживаются через специальные инструменты.
Стартап RumiAI проанализировал ситуацию и предположил, что это попытка добавить водяные знаки для отслеживания ИИ-генерации. Однако символы легко удалить через поиск-замену, что ставит под вопрос их эффективность. Альтернативная версия — модели просто переняли форматирование из обучающих данных, где неразрывные пробелы используются для предотвращения разрывов строк.
OpenAI пока не дала никаких комментариев о причинах появления непечатных символов в результатах генерации.
winbuzzer.com
CharacterAI представила AvatarFX — систему, которая превращает изображения в говорящие, поющие и эмоционирущие видео за пару кликов. Технология сочетает фотореализм, синхронизацию движений губ, тела и рук, а также поддержку длинных роликов.
Под капотом — модифицированная архитектура DiT с flow-based диффузионными моделями, которые обучаются на разнообразных данных: от реалистичных людей до анимированных объектов. От конкурентов систему отличает работа с готовыми изображениями (не только текстовыми описаниями), поддержка нескольких говорящих в кадре и стабильность анимации.
Первыми доступ к AvatarFX получат подписчики CAI+. Остальным придется подождать или записаться в лист ожидания.
blog.character.ai
Два корейских студента без глубокого опыта в ИИ разработали Dia — модель для создания подкаст-диалогов, способную конкурировать с Google NotebookLM. Используя TPU от Google, они обучили модель на 1,6 млрд. параметров, которая позволяет настраивать тон голоса, добавлять паузы, смех и клонировать голоса.
Dia доступна на Hugging Face и GitHub, для запуска на ПК нужен GPU от 10 ГБ VRAM. В отличие от аналогов, Dia даёт пользователям контроль над сценарием: можно прописать реплики, выбрать «характер» говорящего или загрузить образец для клонирования. Короткое тестирование, проведенное редакцией TechCrunch показало, что Dia справляется с диалогами на любые темы, а качество голосов не уступает коммерческим решениям.
techcrunch.com
Physical Intelligence представила модель π0.5 — шаг к роботам, которые справляются с задачами в совершенно новых условиях. В отличие от предшественников, эта система на базе VLA обучалась на разнородных данных: от распознавания объектов до демо движений роботов. Это позволяет ей понимать не только как действовать, но и что именно делать в незнакомой среде — например, класть посуду в раковину, даже если раньше её не видела.
Модель анализирует семантику задачи, разбивает её на шаги и генерирует команды для моторных систем. π0.5 умеет реагировать и на голосовые команды разной детализации — от «убери посуду» до точечных указаний. В планах — улучшение автономного обучения и запросов помощи в сложных ситуациях.
physicalintelligence.company
Академия киноискусств официально разрешила номинировать на «Оскар» фильмы, созданные с использованием ИИ. Как заявили организаторы, технологии генеративного ИИ не станут преимуществом или препятствием при оценке. Но теперь, чтобы голосовать в финале, члены Академии обязаны посмотреть все номинированные работы — это часть новых правил.
Несмотря на прогресс, споры вокруг ИИ не утихают. Актеры и сценаристы опасаются, что алгоритмы заменят их в создании сценариев или дубляжа. Хотя некоторые студии уже внедряют ИИ, аниматоры и режиссеры сомневаются: технологии пока не способны конкурировать с эмоциональной глубиной человеческой работы.
bbc.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥42👍20❤12🤣5🤔1
Describe Anything Model (DAM) - архитектура, разработанная Nvidia, для генерации точных и детальных описаний для конкретных областей на изображениях и видео. Традиционные VLM-модели как отдельная сущность или в связке с SAM-помощниками часто теряют ньюансы, особенно при наличии мелких объектов или динамичных сцен на целевом источнике.
DAM справляется с этим за счет 2 инноваций в своей архитектуре:
Модель принимает изображение или видео и бинарную маску целевой области интереса. Глобальный энкодер извлекает общие признаки, региональный — фокусируется на деталях выбранной зоны. Через адаптеры с кросс-вниманием признаки объединяются, после чего LLM генерирует описание. Для видео маски применяются к каждому кадру, а признаки агрегируются во времени.
# Clone the repo
git clone https://github.com/NVlabs/describe-anything
cd describe-anything
# Create a conda env
conda create -n describe-anything
conda activate describe-anything
# Install dependencies
pip install -v
# Gradio Demo for Image Descriptions
python demo_simple.py
# Gradio Demo for Video Descriptions
python demo_video.py
@ai_machinelearning_big_data
#AI #ML #DAM #NVIDIA #Annotation
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥62👍27❤12
🪰 Виртуальная дрозофила: зачем DeepMind «оживили» плодовую мушку — и что это даёт науке
Кратко: исследователи создали самую точную на сегодня цифровую модель Drosophila melanogaster
Она умеет ходить, летать и ориентироваться в пространстве. Её «тело» рассчитано в физическом движке MuJoCo, а «мозг» — нейросеть, обученная на реальных видеозаписях поведения мух.
🌟 Как это сделали:
1) Физика тела
Исследователи запрограммировали 52 степени свободы суставов, добавили моделирование аэродинамики крыльев и «клейких» лапок-актуаторов, имитирующих силу сцепления с поверхностью.
Источник: Nature
2) Нейроконтроль
Нейросеть обучалась на сотнях видеозаписей реальных траекторий и затем управляла виртуальной мухой в MuJoCo, выбирая, как двигать крыльями и лапками в каждый момент.
3) Зрение
Виртуальные фасеточные глаза передают изображение контроллеру: модель может следовать по заданной траектории и корректировать курс по ходу движения.
4) Открытый код
Весь проект опубликован на GitHub (flybody) под лицензией Apache-2.0 — можно запускать симулятор, писать собственных агентов и экспериментировать с поведением мухи.
✔️ Зачем это нужно
▪️ Нейронаука без электродов.
Модель — это «песочница», в которой можно виртуально перерезать нервы, добавлять шум, менять форму крыла и мгновенно видеть, как это влияет на поведение. Такие эксперименты на живых организмах часто невозможны.
▪️ Тест-полигон для ИИ и робототехники.
Готовая референс-модель движений и сенсорики, вдохновлённая природой — идеальна для обучения автономных систем.
▪️ От мушки к зебре — и дальше.
Методика уже применяется к виртуальным грызунам, а следующим объектом станет зебра-данио (у неё 70 % белков кодируются теми же генами, что у человека). Это даёт уникальную возможность изучить, как мозг приспосабливается к различной морфологии тела — не выходя из симулятора.
Источник: Janelia Research Campus
🔥 Что это даёт
▪️ Исследователи получают бесплатный инструмент для быстрой проверки гипотез о связке «нейроны → движение».
▪️ Робототехники — возможность адаптировать природные механизмы управления и баланса.
▪️ Для нас— ещё один пример того, как ИИ позволяет разбирать живые системы на компоненты, не причиняя вреда природе.
✔️ Посмотреть код, скомпилировать модель и погонять виртуальную мушку можно уже сейчас:
🔜 GitHub
🔜 Статья в Nature
@ai_machinelearning_big_data
#DeepMind #nature #science
Кратко: исследователи создали самую точную на сегодня цифровую модель Drosophila melanogaster
.
Она умеет ходить, летать и ориентироваться в пространстве. Её «тело» рассчитано в физическом движке MuJoCo, а «мозг» — нейросеть, обученная на реальных видеозаписях поведения мух.
1) Физика тела
Исследователи запрограммировали 52 степени свободы суставов, добавили моделирование аэродинамики крыльев и «клейких» лапок-актуаторов, имитирующих силу сцепления с поверхностью.
Источник: Nature
2) Нейроконтроль
Нейросеть обучалась на сотнях видеозаписей реальных траекторий и затем управляла виртуальной мухой в MuJoCo, выбирая, как двигать крыльями и лапками в каждый момент.
3) Зрение
Виртуальные фасеточные глаза передают изображение контроллеру: модель может следовать по заданной траектории и корректировать курс по ходу движения.
4) Открытый код
Весь проект опубликован на GitHub (flybody) под лицензией Apache-2.0 — можно запускать симулятор, писать собственных агентов и экспериментировать с поведением мухи.
▪️ Нейронаука без электродов.
Модель — это «песочница», в которой можно виртуально перерезать нервы, добавлять шум, менять форму крыла и мгновенно видеть, как это влияет на поведение. Такие эксперименты на живых организмах часто невозможны.
▪️ Тест-полигон для ИИ и робототехники.
Готовая референс-модель движений и сенсорики, вдохновлённая природой — идеальна для обучения автономных систем.
▪️ От мушки к зебре — и дальше.
Методика уже применяется к виртуальным грызунам, а следующим объектом станет зебра-данио (у неё 70 % белков кодируются теми же генами, что у человека). Это даёт уникальную возможность изучить, как мозг приспосабливается к различной морфологии тела — не выходя из симулятора.
Источник: Janelia Research Campus
▪️ Исследователи получают бесплатный инструмент для быстрой проверки гипотез о связке «нейроны → движение».
▪️ Робототехники — возможность адаптировать природные механизмы управления и баланса.
▪️ Для нас— ещё один пример того, как ИИ позволяет разбирать живые системы на компоненты, не причиняя вреда природе.
@ai_machinelearning_big_data
#DeepMind #nature #science
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤78🔥48👍25🤔12👌2❤🔥1🤨1
OpenAI открыла доступ к GPT-Image-1 через API — ранее она работала только в ChatGPT.
Стоимость генерации тарифицируется по токенам: текст ($5/млн), ввод изображений ($10/млн), вывод ($40/млн). Одно изображение обходится в $0,02–0,19. Например, картинка 1024×1024 в высоком качестве «съест» 4160 токенов. Модель превосходит Midjourney-v7 в точности следования запросам, но имеет ограничения: плохо распознаёт мелкий текст, нелатинские шрифты, медицинские данные.
Изображения можно загружать через URL или Base64 (PNG, JPEG до 20 МБ). Максимальное разрешение — 768×2000 пикселей. API анализирует объекты, цвета, текст, но не подходит для задач с высокой точностью. Для безопасности добавлены фильтры контента и метаданные C2PA. Тестировать модель можно в Playground OpenAI — подробности в гайдах по работе с API.
openai.com
Suna — открытый ИИ-агент, способный выполнять реальные задачи через чат-интерфейс. В отличие от закрытых коммерческих моделей, Suna работает офлайн, бесплатен и доступен для самостоятельного хостинга.
Suna не просто отвечает на вопросы: он автоматизирует рутину — от парсинга сайтов и генерации отчетов до развертывания веб-приложений. В основе лежит изолированная Docker-среда, React/Next.js для интерфейса и интеграция с LiteLLM, Supabase и Redis. Помимо исходного кода, есть подписка на развернутый у Kortix AI сервис: бесплатно 10 минут в месяц, за 29$ - 4 часа, а за 199\мес - 40 часов работы Suna.
suna.so
Пользователи Firefox теперь могут заглянуть в содержимое ссылки, не открывая ее. Экспериментальная функция в Firefox Labs 138 показывает карточку с заголовком, описанием, временем чтения и тремя ключевыми пунктами, сгенерированными локальной языковой моделью. Все работает через HTTPS-запросы без загрузки страницы или выполнения скриптов — данные парсятся из метатегов Open Graph и Reader View.
Приватность в приоритете: модель SmolLM2-360M (369 МБ) запускается на устройстве через WebAssembly (wllama), избегая передачи данных в облако. Функция пока в тесте: разработчики ждут фидбека об опыте использования от пользователей.
blog.mozilla.org
xAI расширила возможности голосового ассистента Grok: Grok Vision, поддержка многоязыкового аудио и поиск в реальном времени в голосовом режиме. Все это уже доступно пользователям iOS, а для Android-устройств две последние опции открыты только с подпиской SuperGrok. Grok Vision, как заявляют разработчики, позволяет ассистенту анализировать экран смартфона и комментировать происходящее «здесь и сейчас» — например, распознавать объекты или текст.
Ebby Amir (xAI) в X (ex-Twitter)
BMW объявил о партнерстве с DeepSeek для интеграции ИИ-технологий в машины, продаваемые в Китае. Сотрудничество, представленное на Шанхайском автосалоне, направлено на улучшение «Умного персонального ассистента» — система получит новые функции и расширенный доступ к данным.
Интеграция ИИ DeepSeek ускорит переход BMW к «программно-определяемым» автомобилям. Ожидается, что обновления затронут не только ассистента, но и улучшат интерфейсы, а также поддержат более сложные сценарии автономного управления.
bmwblog.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64❤16🔥8🗿2
Исследователи из МiT, Microsoft и Goggle создали фреймворк, который может изменить подход к разработке алгоритмов машинного обучения - I-Con (Information Contrastive Learning).
Он объединил и систематизировал более 20 классических методов ML — от кластеризации до контрастивного обучения в единую структуру, напоминающую периодическую таблицу. Как и ее химический прародитель, эта таблица не только упорядочивает известные алгоритмы, но и указывает на пробелы, где могут существовать еще не открытые методы.
В основе I-Con лежит уравнение, минимизирующее расхождение Кульбака-Лейблера между двумя распределениями: «идеальным» (на основе данных) и тем, что обучает модель. Это уравнение, найденное почти случайно, стало ключом к объединению таких разных подходов, как k-средних, SimCLR и PCA.
Для примера - алгоритм кластеризации в I-Con рассматривается как способ выравнивания распределений сходства точек, а контрастивное обучение — как работа с аугментациями изображений. Такая унификация позволила ресерчерам буквально «скрещивать» методы: комбинация идей из контрастивного обучения и спектральной кластеризации дала новый алгоритм, который на 8% точнее предсказывает классы изображений без меток.
I-Con — не просто теория. В экспериментах на ImageNet-1K фреймворк показал, как перенос приемов между областями машинного обучения улучшает результаты. Например, техника дебайсинга (исправления смещений в данных), изначально созданная для контрастивного обучения, повысила точность кластеризации. А добавление проходов по neighbor propagation в алгоритмы помогло моделям лучше учитывать локальную структуру данных.
Но главное преимущество I-Con — его предсказательная сила. Пустые клетки в таблице указывают на гипотетические алгоритмы, которые ещё предстоит создать. Иными словами, комбинируя подходы из supervised и unsupervised обучения, можно разработать методы, эффективные для задач с частично размеченными данными. Уже сейчас фреймворк помогает избежать «изобретения велосипеда»: вместо того чтобы перебирать варианты наугад, исследователи могут целенаправленно комбинировать элементы из таблицы.
Пока рано говорить, станет ли I-Con общепринятым стандартом, но его потенциал очевиден. Как минимум, он предлагает свежий взгляд на машинное обучение — не как на набор разрозненных алгоритмов, а как на систему со скрытой структурой. И если химики когда-то заполняли пустоты в таблице Менделеева, то ML-исследователи теперь могут делать то же самое — осознанно, а не методом проб и ошибок.
# Clone the repo
git clone https://github.com/ShadeAlsha/ICon.git
cd ICon
# Create a conda env
conda create -n ICon
conda activate ICon
# Install dependencies
pip install -e .
# Evaluate Models
cd ICon
python evaluate.py
# After evaluation, see the results in tensorboard
cd ../logs/evaluate
tensorboard --logdir .
# Train a Model
cd ICon
python train.py
@ai_machinelearning_big_data
#AI #ML #ICon #Framework #Algorithms
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍58❤17🔥10🤣4💘2🦄2