Что внутри:
AutoDidact исследует, как небольшие языковые модели могут самостоятельно улучшать свои исследовательские и аналитические способности. Инструмент генерирует вопросы и ответы на основе предоставленных документов, после чего модель обучается искать информацию и верифицировать собственные ответы.
Ключевым элементом проекта является применение алгоритма Group Relative Policy Optimization (GRPO), который позволяет модели совершенствовать стратегию поиска и повышения точности ответов через цикл обратной связи.
Модель автоматически генерирует значимые пары «вопрос-ответ» из предоставленного корпуса документов, что позволяет ей самостоятельно обучаться и улучшать навыки поиска информации.
Инструмент снижает необходимость ручного создания тестовых кейсов и настройки сложных систем верификации, автоматизируя процесс генерации данных для обучения. Это существенно экономит время и ресурсы на этапе разработки и тестирования.
@ai_machinelearning_big_data
#ml #ai #agents #python
Please open Telegram to view this post
VIEW IN TELEGRAM
👍44🔥20❤10
This media is not supported in your browser
VIEW IN TELEGRAM
Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!
Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU!
✨ Как это работает?
Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова
cuml.patch.apply()
вы "патчите" установленный у вас scikit-learn прямо в памяти.Теперь, когда вы вызываете, например,
KNeighborsClassifier
или PCA
из sklearn:Ключевые преимущества:
2 строчки:import cuml.patch и cuml.patch.apply().
Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.
👇 Как использовать:
Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):
python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend
Добавьте в начало скрипта:
import cuml.patch
cuml.patch.apply()
Используйте scikit-learn как обычно!
Попробуйте и почувствуйте разницу! 😉
▪Блог-пост
▪Colab
▪Github
▪Ускоряем Pandas
@ai_machinelearning_big_data
#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍79🔥45❤10💘3😁1
Python уже несколько лет уверенно лидирует среди языков программирования, а теперь стал ещё ближе к железу. На GTC 2025 NVIDIA объявила о полноценной интеграции Python в свой CUDA-стек.
Это значит, что писать код для GPU можно будет напрямую на Python — без погружения в C++ или Fortran. Как подчеркнул Стивен Джонс, архитектор CUDA, цель — сделать инструмент естественным для Python-разработчиков: «Это не перевод синтаксиса C на Python. Все должно работать так, как привыкли разработчики».
Раньше CUDA требовала глубокого понимания низкоуровневых языков и это здорово ограничивало аудиторию. Сейчас, когда Python стал стандартом в ML и DS, NVIDIA открывает двери для миллионов программистов. По данным The Futurum Group, в 2023 году CUDA использовали 4 миллиона человек — теперь их число может резко вырасти.
Техническая часть такая же обширная, как и ожидания этого события профессиональным сообществом.
cuPyNumeric
— аналог NumPy
, который переносит вычисления с CPU на GPU буквально заменой импорта.Но главное — новый подход к параллельным вычислениям. Вместо ручного управления потоками, как в C++, NVIDIA предлагает модель CuTile, которая оперирует массивами, а не отдельными элементами. Это упрощает отладку и делает код читаемым, не жертвуя скоростью. По сути, разработчики получают высокоуровневую абстракцию, скрывающую сложности железа, но сохраняющую гибкость.
Пока CuTile доступен только для Python, но в планах — расширение для C++. Это часть стратегии NVIDIA по поддержке новых языков: Rust и Julia уже на походе.
Python-сообщество уже может экспериментировать — например, интегрировать CUDA-ядра в PyTorch или вызывать привычные библиотеки. Теперь даже те, кто никогда не писал на C++, смогут использовать всю мощь GPU — осталось проверить, как это скажется на скорости создания прекрасных LLM светлого будущего.
@ai_machinelearning_big_data
#AI #ML #Python #CUDA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥173👍77❤30🤓1
Инструмент позволяет вводить "пошлины" на Python-библиотеки, замедляя загрузку определённых пакетов, чтобы подчеркнуть идею "экономического протекционизма" в коде.
Имитация тарифов на импорты: пользователь может установить "тарифы" (в процентах) на определённые пакеты, например:
import tariff
tariff.set({
"numpy": 50, # 50% тариф на numpy
"pandas": 200, # 200% тариф на pandas
"requests": 150 # 150% тариф на requests
})
▪ Замедление импорта: при импорте указанных пакетов время загрузки увеличивается пропорционально установленному тарифу.
Вывод сообщений: при каждом "обложенном тарифом" импорте выводится сообщение в стиле политической риторики, например:
JUST IMPOSED a 50% TARIFF on numpy! Original import took 45000 us, now takes 67500 us. American packages are WINNING AGAIN! #MIPA
Библиотека использует monkey-patching для перехвата и модификации процесса импорта.
▪Github
@ai_machinelearning_big_data
#fun #python
Please open Telegram to view this post
VIEW IN TELEGRAM
😁153❤26🥱16👍11🔥6🌚4🤣4👏2🎉2😴2🙊1
Reachy Mini — это выразительный и полностью open-source робот, созданный для взаимодействия с человеком, коммуникации и экспериментов с ИИ.
- Все ПО открыто и написано на Python, а скоро будет достнуо — и на JavaScript и Scratch
- Базовая версия стоит $299, еще доступна wireless-версия за $449
- Открытая архитектура и SDK — идеален для экспериментов с LLM, аудио- и визуальными агентами
С ним можно разрабатывать, тестировать, запускать и делиться реальными ИИ-приложениями — на базе современных LLM-моделей.
Технические характеристики
- Высота: 28 см, в режиме сна — 23 см
- Ширина: 16 см, вес: 1.5 кг
- Поставляется в виде конструктора:
- Lite-версия — базовый функционал
- Полноценная версия — автономная версия с Raspberry 5 внутри, встроенным питанием, Wi‑Fi, микрофонами и камерой
🎤 Датчики и интерфейсы
- Микрофоны: Lite — 2, Wireless — 4 встроенных микрофонов
hyper.ai
- Камера: широкоугольная фронтальная камера (в wireless-версии)
- Акселерометр: встроен в Wireless-версию
🔗 Подробнее: http://hf.co/blog/reachy-mini
@ai_machinelearning_big_data
#huggingface #Reachy #opensource #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤74🔥52👍33🤔8👏4🙈3😁2
ThinkSound — духовный наследник mmAudio — который способен генерировать звук к видео с высокой точностью.
▪ Поддерживает chain-of-thought промпты: позволяет по шагам объяснить, как должен звучать объект (например: «это металл, он падает на плитку, должно звучать звонкой эхо»)
▪ Учитывает контекст сцены, физику движения объектов, состав материалов и многое другое
▪ Работает с видео как reasoning-модель, а не просто визуально-аудиофильтр
В демках можно послушать звук шагов на песке, звон разбитого стекла, шум дождя — всё сгенерировано на лету, без записанных сэмплов.
Из минусов - сложно подобрать промпт, но когда получается, то модель выдает годноту.
@ai_machinelearning_big_data
#python #videotosound
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤85👍61🔥27👏9❤🔥2😁2😐2
This media is not supported in your browser
VIEW IN TELEGRAM
NVIDIA показала, как ускорить его в 40 раз — без переписывания кода.
Команда NVIDIA провела эксперимент с 18 миллионами строк данных с фондовых рынков: они выполнили типичный анализ данных с помощью pandas на CPU, а затем тоже самое — на GPU, используя
cudf.pandas
.Для примеры были взяты:
🧊 В общей сложности ~18M строк
Результат впечатляет : удалось добиться**ускорения обработки данных в 20–40 раз
Код скрипта не менялся вообще — тот же pandas, но на GPU.
Это один из примеров, где ускорение достигается без переписывания логики кода.
@ai_machinelearning_big_data
#datascience #ml #nvidia #gpu #pandas #python
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤122👍39🔥18😁3🤔3🤣2
На Youtube вышла документалка о том, как создавался язык программирования Python и о том, как IT-сообщество сделало его одним из основ современной кодовой базы.
Для тех, кто хочет посмотреть на русском, можно открыть ссылку в Яндекс Браузере и включить нейросетевую озвучку живыми голосами.
@ai_machinelearning_big_data
#coding #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥61👍43❤27💘2🥰1