287K subscribers
3.98K photos
684 videos
17 files
4.55K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
🖥 PDF to Podcas- еще один проект преобразования текста в подкасты от NVIDIA

Он предназначенный для преобразования PDF-документов в персонализированный аудиоконтент с использованием технологий генеративного ИИ.

Ключевые компоненты:

- Инструмент преобразования PDF в Markdown: Извлекает содержимое из PDF-файлов и конвертирует его в формат Markdown для дальнейшей обработки.

- Сервис создания монологов или диалогов
: Обрабатывает Markdown-контент, обогащая или структурируя его для создания естественного аудиоконтента.

- Сервис преобразования текста в речь (TTS): Преобразует обработанный контент в высококачественную речь.

Преимущества использования:

- Персонализация: Возможность адаптации решения под специфические потребности организации, включая брендинг, аналитику, реальное время перевода или интерфейс цифрового человека для повышения вовлеченности.
- Конфиденциальность: Решение соответствует требованиям конфиденциальности на всех этапах обработки данных.
- Гибкость: Модульная структура позволяет добавлять дополнительные функции, соответствующие потребностям пользователей.

- Микросервисы NVIDIA NIM используются для развертывания и масштабирования моделей на GPU.

- Модели Llama 3.1 применяются для обработки и генерации текста.

- Langchain используется для обработки и интеграции данных.

- Docling применяется для парсинга документов.

- ElevenLabs предоставляет сервисы преобразования текста в речь.

Лицензирование:
Использование моделей в этом проекте регулируется NVIDIA AI Foundation Models Community License.

Github: https://github.com/NVIDIA-AI-Blueprints/pdf-to-podcast
Project: build.nvidia.com/nvidia/pdf-to-podcast

@ai_machinelearning_big_data


#nim #tts #pdftopodcast
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍4811🔥6🗿2🕊1
⭐️ Native-sparse-attention-pytorch – представляет собой реализацию разреженного механизма внимания на PyTorch, оптимизированного для работы с большими последовательностями.

Он позволяет существенно снизить потребление памяти и ускорить вычисления по сравнению с классическим полносвязным вниманием.

Одним из главных преимуществ данного решения является его высокая эффективность при обработке длинных последовательностей.

За счёт вычисления внимания только по выбранным элементам (а не по всем парам токенов) удаётся уменьшить сложность алгоритма.

Кроме того, инструмент интегрируется непосредственно с PyTorch и использует нативные CUDA-ядра, что позволяет достичь оптимальной производительности на GPU.

Репозитория поможет в экспериментах с архитектурами, где внимание применяется к длинным последовательностям – будь то тексты, временные ряды или изображения – и обеспечивает возможность более эффективного использования вычислительных ресурсов.

native-sparse-attention-pytorch даёт существенные преимущества в снижении затрат памяти и ускорении вычислений, что делает его ценным инструментом для глубокого обучения.

$ pip install native-sparse-attention-pytorch

Github

@ai_machinelearning_big_data


#deeplearning #artificialintelligence #attention #sparseattention #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41🔥93🥰2👏2
🌟 Генерация изображений байесовскими методами.

Исследователи из Мюнхенского университета предложили методику генерации изображений, основанную на байесовском выводе. Экспериментальная модель, которая получила название Bayesian Sample Inference (BSI), имитирует процесс постепенного уточнения данных: ее инференс начинается с «размытого» представления об изображении и последовательно корректируется с использованием шумовых измерений до финального результата. По заверениям авторов, их метод позволяет точнее воспроизводить распределение данных, чем классические решения на основе диффузии.

BSI-модель стартует с априорного распределения, где начальная точность намеренно задаётся низкой — это эквивалентно «размытой картинке», покрывающей всё множество возможных изображений. На каждом шаге генерации, предиктор, построенный на U-Net или ViT, анализирует текущий промежуточный «результат» и генерирует оценку соответствия относительно "идеального" изображения, который, в свою очередь, участвует в пересчете среднего значения и точности для следующего шага генерации.

Такой подход позволяет BSI-модели балансировать между имеющимися знаниями и новыми данными, избегая переобучения и сохраняя разнообразие генерации. Эксперименты выявили, что BSI сохраняет разнообразие сгенерированных образцов даже при малом числе шагов — это выгодно отличает её от аналогов, склонных к «повторяющимся» генерациям.

BSI напрямую сравнивали с диффузионными VDM- и EDM-моделями и BFNs. Оказалось, что BSI-архитектура не только включает BFNs как частный случай, но и превосходит их в тестах на правдоподобие. Например, на наборах CIFAR10 и ImageNet BSI показала лучшие результаты, достигнув 2.64 (BFNs) и 3.22 (VDM) бит на измерение соответственно, но не смогла превзойти модели с точным расчетом правдоподобия (i-DODE).

Эта новая потенциально методика может стать гейм-чейнджером для генерации изображений.

▶️ Практическая реализация метода доступна в репозитории проекта на Github, где представлены инструменты для инференса, обучения и файнтюнинга.


📌Лицензирование: MIT License.


🟡Arxiv
🖥GitHub


#AI #ML #Bayesian #GenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
50🔥31👍23👌1🤝1
🌟 scGPT-spatial: модель для анализа данных о пространственной организации клеток в тканях.

scGPT-spatial - расширенная версия модели scGPT в помощь ученым-биологам для анализа пространственной транскриптомики. Основная цель scGPT-spatial — интегрировать информацию о пространственной локализации клеток и их транскриптомных профилях с знаниями scGPT для расширения понимания организации тканей и взаимодействия клеток в микроокружении.

scGPT-spatial обучалась с с учётом пространственных координат на наборе данных SpatialHuman30M (30 миллионов клеток и спотов из 4 протоколов секвенирования: Visium, Visium HD, MERFISH и Xenium) и использует архитектуру MoE.

В тестах scGPT-spatial показала отличные результаты в задачах кластеризации клеточных типов, деконволюции спотов и импутации генной экспрессии. В экспериментах на интеграцию данных из нескольких слайдов и модальностей модель обошла методы PCA и Seurat v4, достигнув показателя AvgBIO 0.86.

В задаче деконволюции клеточных типов scGPT-spatial превзошла Tangram и Cell2location, со средним Macro F1 в 0.58, а медианный коэффициент корреляции Пирсона в импутации генной экспрессии составил значение 0.6.

Веса модели опубликованы в открытом доступе, а в репозитории проекта на Github - подробная инструкция по настройке окружения для scGPT и ipynb демо-ноутбук инференса.


📌Лицензирование

🟢Код : MIT License.
🟠Модель: CC-BY-4.0 License.


🟡Модель
🟡Техотчет
🖥GitHub

@ai_machinelearning_big_data

#AI #ML #MedML #ScGPT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥72👍199👌1
✔️ Подтвержден выпуск Claude 3.7 Sonnet

AWS Badrock готовятся разместить новую версию Sonnet 3.7, которая, скорее всего, будет анонсирована сегодня во время мероприятия Amazon.

* Модель в настоящее время скрыта и не отображается в пользовательском интерфейсе

Инсайдеры раскопали, что модель достигает SOTA в кодинге, агентных способностях, сложном рассуждении и генерации контента.

Благодаря высокой производительности и контролю над скоростью работы, Claude 3.7 Sonnet заточена для реализации AI-агентов и комплексных AI-решений.

Источник: https://archive.is/BkvLb

@data_analysis_ml - подпистаться
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥51👍167😁1
⚡️ EasyR1 – эффективный и масштабируемый фреймворк для обучения с подкреплением (RL) с поддержкой мультимодальных данных.

Чем интересен EasyR1?
EasyR1 сочетает в себе алгоритм GRPO, продемонстрированный в DeepSeek R1, и расширение системы veRL для поддержки vision-language моделей, таких как Qwen2.5-VL.

Уже после 30 шагов обучения фреймворк показал прирост производительности на 5% в экспериментах на тестовом наборе Geometry3k.

Это делает его привлекательным инструментом для исследователей и разработчиков, работающих с задачами, где объединяются визуальные и текстовые данные.

Фреймворк спроектирован так, чтобы быть масштабируемым и легко интегрироваться с различными алгоритмами RL, что открывает широкие возможности для дальнейших исследований.

Ожидайте будущих обновлений – в них планируется интеграция дополнительных алгоритмов RL и новых архитектур VLM.

Github

@ai_machinelearning_big_data


#EasyR1 #opensource #GRPO #VLM
👍30🔥125
Анализ данных (Data analysis)
✔️ Подтвержден выпуск Claude 3.7 Sonnet AWS Badrock готовятся разместить новую версию Sonnet 3.7, которая, скорее всего, будет анонсирована сегодня во время мероприятия Amazon. * Модель в настоящее время скрыта и не отображается в пользовательском интерфейсе…
А вот и релиз!

Antrhopic выпустили свою ризонинг модель — Claude 3.7 Sonnet.

Новая версия превосходит 3.5 Sonnet и OpenAI o1 на SWE-bench.

Цена api осталось прежней.

С Sonnet 3.7 Anthropic явно сосредоточился на программировании. Другие области, по-видимому, не были для них особенно важны.

Есть улучшения в MMLU и GPQA, но гигантский скачок только в SWE. Очевидно, что Anthropic хочет позиционировать Sonnet как ИИ для кодинга, которым он уже является.

Попробовать можно бесплатно тут.

@ai_machinelearning_big_data
10🔥57👍218🤬3🗿2
✔️ Неделя Опенсорса от DeepSeek продолжается!

Только что китайцы представили DeepEP — это библиотека, разработанная для оптимизации работы моделей с архитектурой Mixture-of-Experts (MoE) и параллелизмом экспертов (EP).

Ее основная задача — обеспечить высокую пропускную способность и низкую задержку при обмене данными между GPU, что критически важно для эффективного обучения и инференса крупных моделей.

Что внутри
Высокая производительность:
- Библиотека предоставляет оптимизированные all-to-all GPU ядра для операций распределения (dispatch) и объединения (combine) данных, что улучшает скорость и эффективность коммуникации между экспертами в модели.

- DeepEP поддерживает операции с пониженной точностью, включая формат FP8, что способствует снижению требований к памяти и увеличению скорости вычислений без значительной потери точности.

- Оптимизация под различные домены: В соответствии с алгоритмом группового ограниченного гейтинга, предложенным в работе DeepSeek-V3, библиотека предлагает набор ядер, оптимизированных для асимметричной передачи данных между различными доменами, такими как NVLink и RDMA. Это обеспечивает высокую пропускную способность при обучении и инференсе.

- Низкая задержка для инференса: Для задач, чувствительных к задержкам, DeepEP включает набор ядер с чистой RDMA, минимизируя задержки и обеспечивая быструю обработку данных во время инференса.

- Работает как с NVLink, так и с RDMA, что позволяет организовать высокопроизводительную связь между GPU как в рамках одного сервера, так и между разными серверами.

Принцип работы:

DeepEP интегрируется в существующие рабочие процессы обучения и инференса моделей с архитектурой MoE, предоставляя эффективные механизмы для обмена данными между GPU. Используя оптимизированные коммуникационные ядра, библиотека обеспечивает быструю и надежную передачу данных, что особенно важно при работе с крупными моделями и распределенными системами. Поддержка операций с пониженной точностью и оптимизация под различные домены позволяют гибко настраивать систему под конкретные требования и аппаратные возможности.

Использование DeepEP способствует повышению эффективности и производительности моделей MoE, облегчая их масштабирование и ускоряя процессы обучения и инференса.

Github

@ai_machinelearning_big_data


#ai #deepseek #opensource #DeepEP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍44🔥168
✔️ Deepseek FlashMLA: ядро ​​декодирования MLA, оптимизированное для GPU Hopper.

В первый день анонсированного на прошлой неделе мероприятия "5 дней опенсорс-проектов" Deepseek опубликовала проект FlashMLA. Это ядро оптимизировано для последовательностей переменной длины, поддерживает BF16 и использует страничный KV (с размером блока 64). Вся эта совокупность позволяет значительно повышать эффективность вычислений.

На H800 FlashMLA показал пропускную способности памяти до 3000 ГБ/с и вычислительную производительность в 580 терафлопс. FlashMLA ускорит процесс рассуждений ИИ и обеспечит более эффективные решения в сфере обработки естественного языка.
Deepseek в X (Twitter)

✔️ Alibaba объявила об инвестициях в размере 53 млрд долларов в создание облачной и аппаратной инфраструктуры ИИ.

Alibaba Group планирует инвестировать более 380 миллиардов юаней (около 53 миллиардов долларов США) в развитие облачной инфраструктуры и технологий ИИ в течение следующих 3 лет. Объем этой инвестиция превышает все предыдущие вложения Alibaba в облачные технологии и ИИ за последнее десятилетие и является крупнейшей инвестицией частной китайской компании в эту сферу. Решение об инвестировании было принято на фоне бурного роста индустрии ИИ в Китае и после совещания с участием высших китайских руководителей, посвященного частным предприятиям.
english.news.cn

✔️ Google опубликовала тарифы на Veo 2: 50 центов за секунду.

Согласно информации на странице проекта, каждая секунда сгенерированного видео обойдётся пользователям в 50 центов. Это означает, что минута видео будет стоить $30, а час — $1800. Для сравнения, инженер Google DeepMind Джон Бэррон привёл пример с бюджетом фильма «Мстители: Финал», где стоимость одной секунды составила около $32 000.

Veo 2 пока не способен генерировать длинные видеоролики, модель ориентирована на продолжительность генерации до двух минут. Тем не менее, такие цены вызывают вопросы о доступности технологии для широкого круга пользователей.
techcrunch.com

✔️ MongoDB приобретает компанию Voyage AI для борьбы с галлюцинациями.

MongoDB приобрела компанию Voyage AI за 220 млн. долларов, чтобы помочь своим клиентам создавать более качественные приложения на основе ИИ. Сделка направлена на обеспечение высокоточной и релевантной выдачи информации, тесно интегрированной с операционными данными.

Технология Voyage AI позволяет извлекать смысл из специализированных текстов и неструктурированных данных: юридических и финансовых документов, изображений и корпоративных баз знаний. Объединение этих технологий с инфраструктурой MongoDB позволит создать максимально надежное решение для разработчиков ИИ.
bloomberg.com

✔️ Perplexity анонсировала собственный AI-браузер Comet.

Perplexity AI готовится к запуску собственного веб-браузера под названием Comet. Компания заявила, что Comet "переосмыслит" сам подход к веб-серфингу, подобно тому, как Perplexity изменила представление о поиске информации. Этот анонс может стать прямым вызовом Google, доминирующим в сфере браузеров. Дата релиза пока неизвестна, но доступна запись в лист ожидания по ссылке.
zdnet.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3113🔥5🥰1
⚡️ YandexGPT 5: модель нового поколения от Яндекса и возвращение компании к публикации LLM-моделей в опенсорс впервые с 2022 года.

Яндекс анонсировал новое поколение больших языковых моделей — YandexGPT 5, включающее Pro и Lite версии.

▶️ YandexGPT 5 Lite

YandexGPT 5 Lite 8B уже доступна на Hugging Face. Модель обучалась в два этапа: претрейн на массиве русско- и англоязычных текстов объёмом 15T токенов и этап Powerup на высококачественных данных объёмом 320B токенов. Она опубликована без финального этапа обучения, этических фильтров и алайнмента, что делает её удобной для исследований и дообучения под специфические задачи разработчиков.

Модель имеет контекстное окно 32k токенов, а в своей категории достигает паритета с мировыми SOTA по ключевым бенчмаркам для pretrain-моделей.

▶️ YandexGPT 5 Pro

В разработке Pro-версии применены значительные улучшения: переработанный датасет с более сложными и разнообразными примерами, усложнённые тренировочные задания, внедрение DPO и PPO с собственной модификацией LogDPO против «разучивания», оптимизация через YaFSDP (-25% вычислительных ресурсов), гибридное обучение с использованием базовых настроек Qwen.

По тестам YandexGPT 5 Pro:

🟢 Достигает уровня GPT-4o в международных тестах и их русскоязычных адаптациях

🟢 Превосходит Qwen-2.5-32b-Instruct в работе с фактами и форматированием, немного уступая в вычислениях

⚠️Pro-версия уже внедрена в чат с Алисой и доступна через API в Yandex Cloud, где может использоваться как в базовой версии, так и с подключением к Поиску.

🟡 Статья

@ai_machinelearning_big_data

#AI #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
👍82🤣3116🥰3🤨3🔥2👌1🗿1