288K subscribers
3.97K photos
682 videos
17 files
4.55K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ Podcastfy — это open-source инструмент, который преобразует текстовый контент в аудио подкасты с использованием синтеза речи.

Он позволяет легко создавать аудиоверсии статей или блогов, упрощая процесс создания подкастов для контент-мейкеров, блогеров или в целях обучения.

🌟 Поддерживает интеграцию с ElevenLabs, OpenAI и Edge TTS, для преобразования текста в речь.

💡 Примеры можно посмотреть здесь.

💨 Поддерживает продвинутые настройки для работы с голосами, стилем речи и другими параметрами. с генеративным контентом.

Установка:
$ pip install podcastfy

Podcastfy — удобный и простой в использовании инструмент для быстрого прототипирования решений по автоматическому созданию аудиоконтента и интеграции в более крупные ML-проекты.

🔐 Лицензия: Apache-2.0

Github
Paper
Colab


@ai_machinelearning_big_data


#podcast #gemini #openai #elevenlabs #genai #notebooklm
Please open Telegram to view this post
VIEW IN TELEGRAM
58👍34🔥11😐2
✔️ Бесплатные полезные руководства по дистилляции моделей:

1. Руководство по дистилляции от OpenAI 🖥

Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.

Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.

- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.

- Создание обучающих данных для компактной модели:
Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.

- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.

🔗Ссылка

2. Учебник по дистилляции знаний от PyTorch 🔥

Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.

Основные аспекты руководства:

- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.

- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.

- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.

Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.

Ссылка

3. Jetson Introduction to Knowledge Distillation от Nvidia 🖥

В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.

Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.

Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.

🔗 Ссылка

4. Учебник по дистилляции знаний от Keras ⭐️

Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.

🔗Github
🔗Учебник Keras

5. Руководство по дистилляции от
huggingface
🤗

Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.

🔗 Ссылка

6. Дистилляция знаний для задач компьютерного зрения от huggingface 👁

Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.

🔗Ссылка

#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6322🔥83
✔️ OpenAI опубликовали статью, в которой описан план создания лучшего в мире ИИ-кодера.
В статье исследуется применение обучения с подкреплением (RL) к большим языковым моделям (LLMs) улучшает их способность решать сложные задачи программирования и рассуждений. Авторы сравнивают три модели: общую модель o1, её специализированную версию o1-ioi (адаптированную для соревнований IOI) и более продвинутую модель o3.

Модель o1 значительно превосходит модели без цепочек рассуждений (например, gpt-4o) по показателям на платформе CodeForces.
Специализированная o1-ioi, оптимизированная для соревнований IOI, показывает хорошие результаты с ручными стратегиями, но её успех зависит от дополнительной настройки и тестовых стратегий.
Модель o3, обученная только с RL и без доменно-специфичных стратегий, демонстрирует ещё более высокую производительность, достигая результатов на уровне элитных программистов мира как на CodeForces, так и на IOI.
Применение в реальных задачах:
Масштабирование RL для общего использования, а не применение специализированных ручных стратегий, является эффективным путём достижения передового уровня ИИ в задачах рассуждения и программирования.
Статья

✔️ Google о квантовых вычислениях «Наш последний прорыв: мы смогли выполнить сложные вычисление за 5 минут, на что одному из самых быстрых суперкомпьютеров в мире потребовалось бы более 10 миллиардов лет — это дольше, чем существует наша Вселенная».
Тред

✔️ Илон Маск анонсировал выпуск новой версии Grok 3 от его стартапа xAI. Он заявил, что это будет «самый умный ИИ на земле»
Релиз состоится 18 февраля в 04:00 (GMT+3). Похоже, что Grok-3 выйдет с режимом рассуждений.

✔️ Вслед за «Последним экзаменом человечества» ScaleAI
выпустили новую очень сложную оценку рассуждений LLM:

EnigmaEval: 1184 мультимодальные головоломки, настолько сложные, что на их решение группам людей требуется от многих часов до нескольких дней.
Все топ-модели набрали 0% в Hard set и < 10% в Normal set
Scale

✔️ 4 SOTA модели компьютерного зрения
От оценки позы до обнаружения объектов в реальном времени - свежие, передовые инструменты компьютерного зрения на Hugging Face, которые очень просты в использовании.
- ViTPose для оценки позы
- RT-DETRv2 для обнаружения объектов в реальном времени
- DAB-DETR улучшает оригинальный DETR, решая проблемы медленного обучения
- DepthPro от Apple для оценки глубины на одном изображении, выдавая расстояния на уровне пикселей в метрах менее чем за секунду.

✔️ Computer use ootb
Свежий инструмент, который представляет собой готовое решение для создания десктопного GUI-агента. С его помощью можно отдавать команды и автоматизировать задачи на ПК (Windows и macOS) через веб-интерфейс, доступный с любого устройства с интернетом.
Github

@ai_machinelearning_big_data


#news #ai #ml #openai #grok #grok3 #Microsoft #ScaleAI #elonmusk #cv #sota #opensource #agents
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4914🔥9😁2🐳1
🚀 Data Fusion 2025 – ключевая конференция в сфере искусственного интеллекта и больших данных.

📅 Дата: 16-17 апреля 2025
📍 Место встречи: Москва, технологический кластер «Ломоносов»
🧠 Спикеры: 200+ экспертов от науки, бизнеса и государства

Что вас ждет?

🔹7 треков и 70+ сессий, посвященных передовым исследованиям и разработкам
🔹Кейс-стади и воркшопы о DS в различных сферах бизнеса от финтеха и промышленности до медицины
🔹Нетворкинг: на площадке вы можете задать вопрос напрямую ученым с мировым именем или коллегам из других отраслей.

🔗 Регистрируйтесь прямо сейчас – https://data-fusion.ru/. Участие в конференции — бесплатное.

#AI #ML #DataFusion #Конференция #IT #bigdata #datascience

*AI — искусственный интеллект
*DS — наука о методах анализа данных
*Нетворкинг — полезные связи
🤨1514👍6🔥5
🌟 DeepSearcher: ИИ-комбайн для ваших данных.

Проект объединяет использование LLM, векторные базы данных для выполнения задач поиска, оценки, ризонинга на основе предоставленных данных (файлы, текст, источники).

Позиционируется разработчиками как инструмент для управления знаниями предприятия, интеллектуальных QA-систем и сценариев поиска информации.

DeepSearcher умеет использовать при необходимости информацию из интернета, совместим с векторными базами Milvus и их сервис-провайдером Zilliz Cloud, эмбедингами Pymilvus, OpenAI и VoyageAI. Есть возможность подключения LLM DeepSeek и OpenAI по API напрямую или через TogetherAI и SiliconFlow.
Поддерживается локальная загрузка файлов, подключение веб-краулеров FireCrawl, Crawl4AI и Jina Reader.

В ближайших планах - добавление возможности веб-клиппера, расширение списка поддерживаемых векторных баз, создание RESTful API интерфейса.

▶️ Локальная установка и запуск:

# Clone the repository
git clone https://github.com/zilliztech/deep-searcher.git

# Create a Python venv
python3 -m venv .venv
source .venv/bin/activate

# Install dependencies
cd deep-searcher
pip install -e .

# Quick start demo
from deepsearcher.configuration import Configuration, init_config
from deepsearcher.online_query import query

config = Configuration()

# Customize your config here
config.set_provider_config("llm", "OpenAI", {"model": "gpt-4o-mini"})
init_config(config = config)

# Load your local data
from deepsearcher.offline_loading import load_from_local_files
load_from_local_files(paths_or_directory=your_local_path)

# (Optional) Load from web crawling (`FIRECRAWL_API_KEY` env variable required)
from deepsearcher.offline_loading import load_from_website
load_from_website(urls=website_url)

# Query
result = query("Write a report about xxx.") # Your question here


📌Лицензирование: Apache 2.0 License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Agents #DeepSearcher
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5519🔥7🐳3👌2🙈1💘1
⭐️ Новый Grok‑3 от xAI стал бесплатным для всех

Сейчас он доступен всем «пока серверы не рухнут», так что самое время протестировать его в деле


Вот главное:
- Вышло два варианта модели: Grok‑3 mini и полноразмерный Grok‑3.

- Беспрецедентные достижения: Первая модель, преодолевшая 1400 очков, и лидирует по всем категориям на арене.

- Режим рассуждений: Хотя базовая модель не «ризонинг», можно активировать режим рассуждений с двумя настройками – «Thinking» и «Thinking Hard». Процесс рассуждения почти полностью прозрачен.

- Выдающаяся производительность: На тестах Math24 hard Grok‑3 показывает результаты лучше, чем R1, o1 и даже o3‑mini high. AIME 24 — 52% [96% с обоснованием!]
GPQA —75% [85%]
Кодинг (LiveCodeBench) — 57% [80%].

- На бенчмарках версия mini сравнима с DeepSeek 3, GPT‑4o и Gemini Pro.

- Новый агент Deep (Re)search: Встроенный инструмент для быстрого интернет-поиска, кросс-валидации источников и корректировки плана, который на демонстрации справился всего за минуту.

https://x.com/i/grok

@ai_machinelearning_big_data


#grok #elonmusk #ai #ml #llm #reasoning #xAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8252🔥22🤔2